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Abstract—Motion tracking is attractive in what concerns a
smart city environment, where citizens have to interact with In-
ternet of Things infrastructures spread all around one particular
city. Motion tracking is important for smart services and Location
Based Services in smart cities, since it provides natural ways
for users to interact with the IoT infrastructures, such as the
ability to recognize of a wide range of hand motion in real-
time. Compared with dedicated hardware devices, ubiquitous
devices with reliable speakers and microphones can be developed
to achieve cheap acoustic-based motion tracking, which is appro-
priate for low-power and low-cost IoT applications. However, for
complex urban environments, it is very difficult for acoustic-based
methods to achieve accurate motion tracking due to multipath
fading and limited sampling rate at mobile devices. In this
paper, a new parameter called Multipath Dispersion Vector
is proposed to estimate and mitigate the impact of multipath
fading on received signals using Extreme Learning Machine.
Based on MDV, a Robust Acoustic Motion Tracking (RAMTEL)
method is proposed to calculate the moving distance based on
the phase change of acoustic signals, and track the corresponding
motion in two-dimensional plane by using multiple speakers. The
method is then proposed and implemented on standard Android
smartphones. Experiment results show, without any specialized
hardware, RAMTEL can achieve an impressive millimeter-level
accuracy for localization and motion tracking applications in
multipath fading environments. Specifically, the measurement
errors are less than 2 mm and 4 mm in one-dimensional and
two-dimensional scenarios, respectively.
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I. INTRODUCTION

A. Motivation

MOTION tracking is attractive in what concerns a smart
city environment, where citizens have to interact with

Internet of Things (IoT) infrastructures spread all around one
particular city. Motion tracking is important for smart services
[2] and Location Based Services (LBS) [3] in smart cities,
since it provides natural ways for users to interact with the IoT
infrastructures, such as the ability to recognize of a wide range
of hand motion in real-time [4]. For the interaction between
user and IoT infrastructures, different kinds of motions caused
by user’s gesture or movement are required to tracked accu-
rately in real-time, since slight different motions may represent
different meanings at different times. Further, the motions
in smart cities are usually slow or small, such as waving
hand and walking, so the motion tracking technologies are
required to track the small and slow movements in daily life.
In addition, unlike rural areas, the urban environments of smart
cities are usually complex, since there are many buildings,
cars, and citizens, which bring interference on accurate motion
tracking. Many efforts based on wireless signals have lately
been made for standard mobile devices, such as smartphone,
smartwatch, Tablet PC, which could gather information about
the device movements according to the change of received
wireless signals. Some works have been proposed based on
different electromagnetic signals, such as Wi-Fi signal [5],
visible light [6], and millimeter wave [7]. These methods
usually sample the signals with high frequency to capture
the subtle changes in the signals. The methods have been
considered as a promising approach to locate smartphones,
since they don’t require additional hardware, beside wireless
network card or camera on the smartphone. However, the
computation overheads of them are huge, and it’s challenging
to track user’s motion in real-time using commercial hardware
devices. Further, they only achieve sub-meter-level accuracy,
which is not good enough for tracking a user’s gesture
or posture. Compared with electromagnetic signals, acoustic
signals have much lower frequencies and slower propagation
speeds. Therefore, they are very suitable to be used for high-
accurate and low-latency motion tracking applications, such
as the interaction between citizens and IoT infrastructures in
a smart city. Further, unlike dedicated hardware devices, the
ubiquitous devices with reliable speakers and microphones
can be developed to achieve cheap acoustic-based motion
tracking, which is appropriate for low-power and low-cost IoT
applications.
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B. Technical Challenges

For the smart services and LBS in smart cities, the first
challenge is to achieve accurate motion tracking using acoustic
signals. Existing acoustic based motion tracking system either
use Doppler effect based methods [8] [9] [10], or Frequency
Modulated Continuous Wave (FMCW) based methods [11]
[12] [13]. Doppler effect based measurement can only provide
the coarse-grained moving speed and direction, and cannot
obtain specific position of the target. Traditional FMCW
systems emit periodic pulses or chirps which bring in audible
harsh noise on commercial speakers [14]. Both Doppler effect
based and FMCW based methods assume that the target moves
uniformly in a time window, so that they can use the frequency
information in the time window to estimate target’s moving
distance, and thus tracking the target. However, in practical
applications, such as tracking a waving hand, the target does
not always move uniformly, which would bring error to their
estimation. Thus, their works only achieve coarse-grained
measurements.

The second challenge is to track small and slow movements
of target devices. Specifically, the relative velocity between
source and receiver could cause a frequency shift of received
acoustic signals, and More obvious frequency shift could be
achieved at higher relative velocity. Thus, traditional Doppler
effect based systems require the target device to move quickly,
such swinging the target vigorously, so that they can obtain
obvious frequency changes of received signals caused by
Doppler shift. However, the resolution of Doppler shift is
limited by the low sampling rate on commercial mobile
devices (e.g., 48 KHz for typical mobile phones). The Doppler
effect based methods can only coarsely estimate the target’s
moving speed and direction while the target moves fast, and
cannot track slow movements due to limited resolution. In
FMCW based methods, a source transmits acoustic signals
with high bandwidth, and a receiver analyzes the information
in frequency domain using Fast Fourier Transform (FFT) for
example. The resolution of moving distance is limited by
the bandwidth of the signals (7-8 KHz at most for typical
smartphone without introduce notable noises). Thus, it is very
difficult for those traditional methods to track small and slow
movements of mobile devices.

The third challenge is to mitigate severe fading effects in
complex urban environments. Normal mobile devices using
traditional methods can hardly distinguish Line-of-Sight (LoS)
signals from Non-LoS (NLoS) signals with slightly different
delays from multiple propagation paths. Some typical studies
about LoS and NLoS focus on the optimization of coverage
probability, energy efficiency, transmissions and multislop path
loss for cell networks [15] [16], which cannot be use in acous-
tic motion tracking directly. Due to the reflection of furniture
and walls, the received acoustic signals are the superimposition
of signals from different direct and reflected paths and each
path has different delay and attenuation. So it’s challenge to
calculate the transmission time from the source to the receiver
accurately, and track target’s motion. There have been some
works on improving the accuracy of acoustic motion tracking
[11] [17] [18]. However, they either require specified hardware

or have limited performance in multipath fading environments.
For example, in SoundTrak [17], a dedicated smart watch
tracks the motion of a micro-speaker using the inaudible
acoustic signals, but it requires a specified microphone array
placed on the smart watch to track the micro-speaker’s motion.
Vernier [18] proposes an active motion tracking approach by
calculating the phase change of received signals and then
estimating moving distance. However, the effects of multipath
fading are not taken into consideration in Vernier because the
target device is moved in a small area without the interference
from multiple paths.

C. Proposed Approach

In this paper, a Robust Acoustic Motion Tracking (RAM-
TEL) method is developed to track the motion of typical
mobile devices, i.e., smartphone, smartwatch, Tablet PC, using
Extreme Learning Machine (ELM). RAMTEL use the phase
changes of received acoustic signals to estimate target device’s
moving distance relative to each source. Since the phase infor-
mation can be derived in time domain, we can track the motion
in real-time, and the target isn’t required to move uniformly.
Further, the resolution of moving speed and distance also
is not limited by the sampling frequency and bandwidth of
the signals as Doppler effect and FMCW based methods.
Therefore, RAMTEL can track small and slow movements in
real-time. In order to mitigate the effects of multipath fading,
we leverage the fact that the multipath fading effects have
different impacts on the phase-based measurement of different
frequencies at the same time due to their different wavelengths
and phases. Thus, RAMTEL could select the signal with the
smallest impact of multipath fading, and provides fine-grained
motion tracking for the device in typical urban environments,
i.e. indoor environments.

Specifically, we use multiple sound sources transmit in-
audible acoustic signals at different frequencies, the target
mobile device receives these transmissions, and derives the
distance change to each source based on phases of received
signals. In order to achieve phase based motion tracking,
we should address several major challenges. First, we need
to calibrate the phase offsets between sender and receiver
due to their asynchronous system clocks. Due to different
system clocks used in receiver and sender, the phase difference
between them increases over time. It is difficult to distinguish
the phase change caused by the movement of receiver or
the asynchronous system clocks. Thus, before phase based
ranging, the phase offsets due to asynchronous clocks should
be calibrated. The increases of phase offsets are slow and
difficult to be measured by frequency analysis methods, e.g.,
FFT. Second, we should accurately measure the phase of
LoS signals in multipath fading environments. The received
signal is a superposition of signals from different paths and
it’s difficult to distinguish LoS signals from NLoS signals on
normal mobile devices. Thus, it’s even harder to calculate the
actual phase of LoS signals.

To address the challenges, we propose a fine-grained phase
calibrating method, which could accurately calibrate the phase
offsets at different frequencies between the target mobile
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device and all sources. Further, in order to obtain the accurate
phases of LoS signals, which are vulnerable to multipath
fading in indoor environments, a new parameter called Multi-
path Dispersion Vector (MDV) is proposed to estimate the
impact of multipath fading on received signals at different
frequencies. MDV is obtained from the scatter diagram of
received quadrature and in-phase signals, which is extracted as
a feature for the training set of ELM. Based on MDV, ELM can
select the signal with minimal interference to track the motion,
which can effectively mitigate multipath fading effects. Thus,
RAMTEL can obtain the accurate phase change from the
signals under different impact of the effects, and track corre-
sponding motion even a small and slow one. Compared with
our prior work [1], RAMTEL uses machine learning based
methods to improve system performance in multipath fading
environments, which could improve robustness in complex
scenarios. In particular, we leverages a high dimension feature
(MDV) of the physical waveform , as discussed in Section
IV-B, and use Extreme Learning Machine to estimate the
impact of fading effects based on MDV, as discussed in Section
IV-C. Further, this work evaluates the performance of tracking
small and slow movements by conducting experiments. In
the experiments, RAMTEL monitors the breathing of six
volunteers, as discussed in Section VII-A3. The results show
that our system could track small and slow movements, which
indicates that our method have potential to carry out new
applications, such health care, alarm systems and intrusion
detection. some complex scenarios are also evaluated using
experiments, such as LoS and NLoS scenarios, scenarios under
different types of noises, and the impact of movement around
the direct path between sender and receiver.

The key contributions of this paper are summarized as
follows:

• To address the technical challenges of accurate motion
tracking using acoustic signals, we propose a fine-grained
phase calibrating method to calibrate the phase offset
caused by the asynchronous system clocks at sender and
receiver, thus the movements can be accurately tracked
by our system using the phase change of received signals.

• To address the technical challenges of motion tracking in
a typical urban environment, a new parameter called Mul-
tipath Dispersion Vector (MDV) is proposed to estimate
and mitigate the effects of multipath fading on received
signals using Extreme Learning Machine, a single hidden
layer feed-forward neural network.

• Based on MDV, a novel Robust Acoustic Motion Track-
ing (RAMTEL) method is developed to calculate the
moving distance based on the phase change of acoustic
signals, and track corresponding motion by using multiple
speakers.

• A prototype system is implemented on a standard An-
droid smart phone. Experiment results show our RAM-
TEL method can achieve an impressive millimeter-level
accuracy for localization and motion tracking applications
in multipath fading environments. Specifically, the mea-
surement errors are less than 2 mm and 4 mm in one-
dimensional (1-D) and two-dimensional (2-D) scenarios,

respectively.
In summary, our work achieves: (1) feasible motion tracking
with mm-level accuracy on mobile devices, (2) strong robust-
ness in dense multipath fading environments.

The rest of this paper is organized as follows. Related work
is reviewed in Section II. Section III provides the system
design for phase calibration, phase change calculation, and
phase based 1-D ranging. Detailed procedures of multipath
mitigation are given in Section IV. The details of motion
tracking in 2-D plane are given in Section V. Implementation
details and experimental results are presented and discussed
in Sections VI and VII, respectively. Some limitations and
future work are analyzed in Section VIII. Finally, Section IX
concludes this paper.

II. RELATED WORK

There are many existing works using acoustic signals to
track the motion of mobile devices, which are clearly different
from our work.

Doppler effect based acoustic motion tracking: Many
schemes use Doppler effect to track devices’ moving distance
or trajectory [8] [9] [10]. They leverage the fact that the
relative velocity between sound sender and receiver could
cause a frequency shift of received acoustic signals, which can
be measured by frequency domain analysis in a time window,
such as Short Time Fourier Transform (STFT). Specifically,
they assume that the devices move uniformly and quickly in
each time windows, so that they can obtain obvious frequency
shift of received signals due to Doppler shift, thus estimating
the moving distance and direction according to the frequency
shift in the time windows. However, the resolution of moving
speed vres is limited by the window size, and the assumption
that requiring the devices move uniformly is noise-prone in
practical systems. We have vres = c · Fs/(NSTFT · Fc) [8].
Where c is velocity of sound in air. Fs is the sampling rate.
The maximum Fs is 48 KHz for typical smartphones. Fc is
the original frequency of the signal. When Fc is 18 KHz
and NSTFT is 4096, the resolution of moving speed is about
22 cm/s. Thus, Doppler based methods couldn’t detect slow
movement which is vital in mobile interaction. In contract, our
system is able to track slow movements in real-time without
limited by the moving window size.

FMCW based acoustic motion tracking: Some works
track the motion of mobile devices using Frequency Modu-
lated Continuous Wave (FMCW) signals [11] [12] [13]. They
estimate the moving distance of the devices by calculating the
frequency difference of the FMCW signals between receiver
and sender. However, the resolution of moving distance dres is
limited by the bandwidth of transmitted signals, dres = c/B
[11]. Where c is sound speed, and B is the bandwidth of
transmitted signals. For example, when B is 7 KHz, the
resolution is about 4.9 centimeter in indoor environments.
Thus, FMCW based schemes are unable to track the motion
of small movements. In our work, we calculate the distance
change in time domain, instead of using frequency analysis,
whose ranging resolution is not restricted by the bandwidth
of signals. Our system is able to track the small movements
without limited by bandwidth of signals.
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Phase based acoustic motion tracking: Recently, phase
based acoustic motion tracking methods have been proposed
[11] [17] [18]. The phase offsets between receiver and source
due to asynchronous system clocks are approximately com-
pensated as a fixed value at each frequency in [11] [18].
However, the rough approximations of the phase offsets limit
accuracy and cause accumulating measuring error over time.
Further, multipath effects aren’t taken into consideration in
typical active ranging approaches [17] [18], because the target
devices in their works are moved in a small area without
the interference from multiple paths, such as an area of
about 10cm × 10cm in [17]. For larger areas, the multiple
effects can’t be neglected and hinder the performance of
motion tracking. Compared with our prior work [1], RAMTEL
improves the robustness in different types of multipath fading
environments since we use machine learning technologies with
a high dimension feature (MDV) to improve the accuracy of
estimating multipath fading effects.

Signature based acoustic motion tracking: Signatures
can be obtained acoustic signals [19] [20] [21]. The posi-
tion signature of mobile devices can be obtained from the
characteristics of received signals, such as Received Signal
Strength Indication (RSSI) and spectrum. They first collect the
signal characteristics at a set of know position, and store this
information as signatures in a database along with the known
coordinates in an off-line phase. In order to obtain real-time
localization, the signature based scheme needs to compare its
measurement results with its huge database at all times. During
the on-line tracking phase, users match received signals with
those recorded characteristics, and choose the closest match
as the estimated location. However, these signatures vary over
time and environmental mobility, and need to be updated
when the environment changes. Compared with signatures-
based localization methods, we use a model-based method
to track device’s position, and reduce the dependence on the
database collected in off-line phase.

III. SYSTEM DESIGN

In this section, the overview of our approach is firstly
provided. Then, the system design is described, including
phase calibration, multipath effect mitigation, and phase based
ranging.

A. RAMTEL Overview

Because of the above limitations of existing approaches,
we propose a phase-based ranging approach for acoustic
signals using LoS signals, which has more robust and accuracy
performance.

In order to make the sound inaudible, a static audio source,
like a commercial speaker, continually transmits sinusoidal
signals at single frequency in the range of 17-23 KHz. The
sound in the range can be generated and received by many
commercial devices without introducing audible noises.

The signals received by smartphone’s microphone are com-
posed of LoS signals and the NLoS signals reflected by static
objects, such as wall and table. When the receiver moves
close/away, the length of the LoS path would change and the
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Fig. 1. Calculating moving distance using the phase based of acoustic signal.

reflection path remains stationary. When the receiver, like a
smartphone, moves close/away, the phase of acquired signal
would increase/decrease due to the length change of LoS path,
as shown in Figure 1. As the phase of the signal increases by
2π, the path length would decrease by one wavelength of the
sound wave. We can use phase changes ∆θ to determine the
movement direction and calculate the real-time relative moving
distance ∆l of the receiver.

We show the design of RAMTEL in Figure 2. The smart-
phone receives acoustic signals from its microphone. The
signals first walk through multiple Band Pass Filters (BPFs).
For each BPF, only the signals at the specific frequency
could pass through the BPF, and the interference from the
signals at other frequencies are both eliminated. After passing
through the BPFs specified at different frequencies, the signals
at different frequencies could be measured independently.
Then, the transformation distance changes can be calculated
based on the phase changes of signals. However, the phase
change is very vulnerable to the interference of multipath
effects in indoor environments, which could lead to incorrect
measurement. In particularly, some transformation distance
changes could be used to estimate the moving distance of the
smartphone, while some of them are interfered by multipath
fading effects, and could lead to incorrect estimation of the
moving distance. In order reduce the impact of multiple paths,
we propose a novel multipath mitigation algorithm based on
machine learning technologies. The algorithm could select
the signal with the smallest impact of multipath fading to
estimate the moving distance in real-time, and thus improving
the performance of the phase based measurement in practical
multipath fading environments.
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B. Calculating Phase Change

Before phase based ranging, we need to calculate the phase
change in the received signals.

We now give an overview of RAMTEL when a source
transmits the signal at a single acoustic frequency, namely
A cos (2πfct). A is the amplitude of sound and fc is the
frequency of the sound. The mobile device obtains acoustic
signal Ri(t) from its microphone, as the MIC block in Figure
3. In order to measure the phase change at each frequency
independently, we use a BPF with narrow band which could
pass the signals around center frequency fc, and rejects signals
at other frequencies, as shown in the figure. We delay the
filtered signal Rα by a quarter of fundamental-wave period.
The delayed signal Rβ is orthogonal to Rα,

Rα (t) = A′ cos (2πfct− τ) ,

Rβ (t) = A′ sin (2πfct− τ) .
(1)

Where A′ is the amplitude of the signal after transmission
attenuation and filtering. τ is the phase delay due to sound’s
propagation from source to receiver at time t. Rα and Rβ can
be further used to estimate the impact of multipath effects
in Section IV. We calculate the phase change using Park

BPF Delay

Park 

transformation

MIC

arctan

Fig. 3. Calculating phase change using Park transformation.

transformation [22]. After multiplying a transformation matrix
P to Rα and Rβ ,[

Rd (t)
Rq (t)

]
= P ·

[
Rα (t)
Rβ (t)

]
(2)

where P is the Park transformation matrix

P =

[
cos (2πfct) sin (2πfct)
− sin (2πfct) cos (2πfct)

]
.

We can obtain two based band signals without the carrier
frequency fc component, corresponding to Rd and Rq:

Rd (t) = A′ cos (τ) ,

Rq (t) = −A′ sin (τ) .
(3)

Then, we calculate the phase delay τ at time t using inverse
tangent transformation, and the phase change in each frame.

C. Calibrating Phase Offsets due to Asynchronous System
Clocks

Due to different system clocks used in receiver and sender,
the phase difference between them increases over time. It
is difficult to distinguish the phase change caused by the
movement of receiver or the asynchronous system clocks.
Thus, before phase based ranging, the phase offsets due to
asynchronous clocks should be calibrated. In prior works [11]
[17] [18], they assume that the linear phase offsets can be
seen as a fixed value at each frequency. The phase offsets

at different frequencies are compensated by the phase offset
at a certain frequency, as f2 in Figure 4a. Thus, the phase
difference at different frequencies are compensated as the same
linear increase in time domain. However, according to our
extensive experiments and the comparison with the impact
of asynchronous system clocks on Orthogonal Frequency
Division Multiplexing (OFDM) system [23], the asynchronous
system clocks also lead to a linear phase increase in frequency
domain, thus causing different phase increases at different
frequencies in time domain, as shown in Figure 4b. The
approximate compensations in prior works limit their accuracy
and cause measuring error accumulated over time.
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Fig. 4. Calibrating phase in time and frequency domain

In order to compensate the phase offset at each frequency,
we first measure the phase offsets at several frequencies from
a source, such as f1,f2,f3, and f4 in Figure 4b. Then, we
use a linear fitting to estimate the slope and intercept of the
linear phase shift in frequency domain. The signals from each
source in our system are generated by a sound card and have
the same clock, so that the phase of signals at frequency fc
from an arbitrary source can be compensated as

τadjusted(fc) = τ raw(fc)− ω(fc)t

ω(fc) = ξfc + µ.

Where τadjusted(fc) and τ raw(fc) are the adjusted and raw
phase at frequency fc, respectively. t is the time elapse from
starting up. ω(fc) is the phase offset at frequency fc. ξ and µ
are the slope and intercept of the linear phase shift in frequency
domain.

D. Phase Based Ranging

After obtaining the phase changes at different frequencies,
we use the phase change of the selected signal in each frame
to determine the LoS path length change. In each frame,
assume a speaker transmits signals at Nf frequencies. When
the receiver moves close/away, the phase of acquired signals
would increase/decrease. As the phase of the signal increases
by 2π, the path length would decrease by one wavelength
of the sound wave. The phase change of the signal at i-
th frequency is denoted as ∆θi + 2πki, where ∆θi denotes
the wrapped phase change of the frequency relative to initial
phase, ∆θi ∈ [0,2π] , and ki is an integer which denotes the
number of phase wraps during the movement, i = 1,2,...,Nf .
When the phase varies from π to −π / from −π to π, ki
increases/decreases by 1. We can use the real-time distance
change to calculate the speed, direction of the movement.
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Then, the transmission distance change ∆li of the signal can
be expressed as

∆li = −∆θi + 2πki
2π

λi. (4)

Where λi represents wavelength of the signal i-th frequency.
During the movement, RAMTEL calculates the transmission
distance change at each frequency, which can be written as
∆l =

[
∆l1,∆l2, ...,∆lNf

]
. If there are no interference of mul-

tipath fading effects, the transmission distance changes at each
frequency should be equal, i.e. ∆l1 = ∆l2 =, ...,= ∆lNf

,
which is equal to the moving distance of receiver in the frame.
However, due to multipath fading, the calculated transmission
distance changes are under different interference. Thus, we
propose an algorithm to select the signal with the smallest
impact of multipath fading from the Nf signals to estimate
the moving distance, and mitigate the impact of multipath
fading. Detailed procedures of multipath mitigation are given
in Section IV. Then, the moving distance lsum of successive
frames can be estimated as

lsum =
∑

lframe. (5)

Where lframe is the calculated transmission distance change
with the smallest impact of multipath fading between the Nf
measurements in each frame. The phase of receiver changes
as the movement of receiver in real-time, so that RAMTEL
could detect small and slow movements which are unable to
be measured by transitional Doppler based methods.

IV. COMBATING MULTIPATH USING EXTREME LEARNING
MACHINE

In practical system, sound signals propagate along a straight
line to the receiver in free space. Due to the reflection of wall,
floor, and other objectors, the received signal is a superimpo-
sition of the LoS signals and the reflected signals. Sometimes
the receiver obtains different phase of the signal at the same
frequency. It is difficult to distinguish the phase change caused
by the length change of direct path. However, prior works
[11] [18] neglect the influence of multipath effects in active
ranging system. According our extensive experiments, the
multipath effects should be taken into consideration in the
active tracking systems. The multipath effects would lead
to periodic attenuation of the received signals, which not
only brings error in the estimation of moving distance, but
also incorrect moving direction. Some new studies use novel
features to evaluate wireless channel model, such as using
the fractal coverage characteristic to evaluate the performance
of the small-cell networks [24]. However, few studies have
investigated to mitigate the effect of multipath fading for phase
based acoustic measurements.

A. Multipath Fading Effect
Suppose that the receiver signals are the superimposition of

signals from Np paths and each path has different delay and
attenuation. In the paths, the i-th signal Ri (t) has delay τi
and amplitude ai. Then, the receiver signal R (t) is

R (t) =

Np∑
i=1

Ri (t). (6)

where Ri (t) = ai cos (2πfct− τi). Thus, it is difficult to
obtain the actual phase change from the superimposition of
signals traveled from different paths.

To address this issue, we propose an algorithm which could
estimate the impact of multipath fading effects on the phase-
based ranging and motion tracking. We use a speaker to
transmit the signal at Nf different frequencies. In each frame,
the receiver could measure the phase change at each frequency
independently using the BPF, and estimate the transmission
distance changes based on the phase-based ranging proposed
in Section III-D, i.e. S =

{
∆l1, ∆l2, ....,∆lNf

}
, where ∆i

is the distance estimated by the signal at i-th frequency. The
signals at different frequencies have different wavelengths and
are transmitted through the same multiple paths to the receiver.
So, the phase changes of the same multipath paths are different
under different frequencies. We leverage the fact that the
multipath fading effects have different impact on the phase-
based measurement of different frequencies at the same time
due to their different wavelengths and phases. Thus, in each
frame, we can use the phase change with the smallest effects
to estimate the moving distance, thus reducing the impact of
multipath fading effects, i.e.

lframe = arg min
∆l∈S

f (∆l) . (7)

Where f(.) is the function of calculating the impact of
multipath fading effects. lframe is the distance estimated by
the signal with the smallest impact of the effects in the frame.

So how to find the f(.) and determine the impact of
multipath fading effects on the signals? Previous work [25]
uses linear regression to remove abnormal estimation at certain
frequencies and calculates the distance change using the
remaining frequencies. However, this algorithm needs high
bandwidth to ensure good regression results, and couldn’t been
used in our system due to limited bandwidth in each speaker.
In this paper, we propose a novel algorithm to evaluate the
impact of multipath fading effects on the signals at different
frequencies using a feed-forward neural network with single
hidden layer, i.e. Extreme Learning Machine (ELM). We call
this multipath mitigation algorithm as Combating Acoustic
Multipath using ELM (CAME). We first explain the features
we consider, and then provide implementation details of the
ELM techniques.

B. Feature Selection and Extraction

The foundation of CAME is the accurate feature selection
and extraction of signals under different multipath fading
effects. ELM is carried out to estimate the impact of multipath
fading based on these feature vectors. For the signal at each
frequency, we obtain Rα and Rβ in the preprocessing step.

In the off-line phase, firstly, we use a speaker to transmit
acoustic signals at different frequencies. Then a smartphone
receives the signal and moves uniformly in a straight line. We
calculate received signals’ normalized scatter diagram at each
frequency in a frame between Rα and Rβ , which are obtained
in the preprocessing step, as shown in Figure 5c and Figure
5d. We use the feature of the normalized scatter diagram to
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define whether the phase-based measurement is affected by
the multipath fading effects in the frame.

Lemma 1. When the impact of multipath fading is small, all
the points in the normalized scatter diagram at each frequency
are located on the edge of a unit circle.

Proof: It is simpler to treat this case in complex form

R (t) =

Np∑
i=1

Ri (t) = Re

 Np∑
i=1

aie
j(2πfct−τi)


= Re

(
ej2πfct

(
a1e
−jτ1 + a2e

−jτ2 ...+ aNe
−jτNp

))
a0e
−jτ0 =

(
a1e
−jτ1 + a2e

−jτ2 ...+ aNe
−jτNp

)
R (t) = Re

(
a0e

j(2πfct−r0)
)

= a0 cos (2πfct− r0) .

(8)

The superimposition of signals from multipath paths is a
cosine signal. a0 is the amplitude and τ0 is the phase of signal.
a0 and τ0 are related to ai, and τi, and independence with time
and carrier frequency. The large scale fading, such as path-
loss and shadowing, only introduces the smooth changes of
received signals, while small scale multipath fading changes
the amplitudes of signals rapidly. The radius of the points
a0 is a function of ai, and τi. The length of multiple paths
would change during the movement, which leads to the change
of ai and τi. When the impact of multipath fading is small,
ai and τi changes slowly in each frame due to the smooth
propagation loss of the path. Thus, a0 has almost the same
value in the frame, as shown in Figure 5c. As a result,
R2
α+R2

β = a20 cos2 (2πfct− r0)+a20 sin2 (2πfct− r0) = a20,
all the points have fixed radius a0 for each frequency and are
located on the edge of a unit circle in the normalized scatter
diagram.

When the impact increases, the small scale multipath fading
causes a rapid and irregular change of a0 in the frame, and all
the points in the normalized scatter diagram at each frequency
are located on a circular ring, as shown in Figure 5d. The
distribution of points on the ring can be used to estimate the
impact of multipath fading effects. The more serious multiple
fading effects, the more irregular distribution of the points.
Thus, we can extract features from the distribution of the
points to estimate the impact of multiple paths.

Secondly, based on these observations, we propose to quan-
tify the impact of multipath fading effects based on the features
extracted from the normalized scatter diagram. For the signal
at each frequency, assume there are Ns samples in a frame,
and the Euclidean distance vector between these Ns points
and circle center is DED:

DED = [D1, ..., Di, ..., DNs
] , (9)

where Di is the Euclidean distance between i-th point and the
circle center, i = 1,2,...,Ns. DED can’t be used as the feature
for training because Ns is usually large (more than 500) which
could bring large computation and latency.

In order to reduce the dimension of features and computa-
tion overhead, we extract a new feature from the normalized
scatter diagram. We divide the normalized scatter diagram into
Nc evenly spaced concentric rings (Nc � Ns), as shown in
Figure 5d. Then, we calculate the number of points between

adjacent concentric circles, as shown in Figure 5d, and convert
the numbers into a vector x:

x = [F1, ..., Fj , ...FNc
] , j = 1,2,...,Nc. (10)

where Fj is the number of points that satisfy{
Di

∣∣∣∣j − 1

Nc
< Di 6

j

Nc

}
, i = 1,2,...,Ns. (11)

Nc (we set 30 in our experiments) is much smaller than
the length of DED (we set 512 in our experiments). Thus,
the x is selected as a feature vector for training set without
introducing large computation overhead, and we call this
feature as Multipath Dispersion Vector (MDV).

Thirdly, the application of machine learning to new prob-
lems requires labeled training data. So, each input features
vector of ELM should be labeled with a training target value
which could describe the impact of multipath mathematically.
In each frame, we collect the estimated distance P̂ , in conjunc-
tion with a measure of certainty P . Then, we use the Ranging
Error Rate (RER) (denoted by t)as the training target value
corresponding to the feature vector in the frame

t =
P̂ − P
P

. (12)

The RER indicates the impact of multipath fading effects to
the measurement. The small t means the estimated distance is
close to the measure of certainty, and indicates small multipath
fading interferes on the measurement.

In the off-line phase, we collect M training samples in
multipath fading indoor environments. Specifically, for the i-
th training sample, we calculate the MDV as the input feature
vector xi, and measure the error rate t of the signal as the
output training target value ti. The training sample can be
denoted as (xi, ti), i = 1, 2, ...,M . Then, ELM use the
training samples to evaluate the impact of multipath fading
at different frequencies.

C. ELM for Multipath Mitigation

ELM is a Single Hidden Layer Feed-forward Neural Net-
work (SLFN) [26], which is adopted to evaluate the impact of
multipath fading in our experiments.

Assume the training set has M samples, i.e. (xi, ti), where
xi = [xi1, xi2, ..., xin]

T ∈ Rn, ti = [ti1, ti2, ..., tim]
T ∈ Rm,

and j = 1, 2, ...,M . n is the dimension of each feature vector
xi, and m is the length of output vector t. Standard SLFNs
with L hidden nodes are mathematically modeled as

L∑
i=1

βigi (xj) =
L∑
i=1

βigi (ωi · xj + bi) = ti

j ∈ 1,2,...,M.

(13)

Where the hidden node g (·) is a nonlinear activation function.
ωi = [ωi1, ωi2, ..., ωim]

T is the weight connecting the i-th
hidden node and the input nodes. βi = [βi1, βi2, ..., βim]

T

is the weight connecting the i-th hidden node and the output
nodes. bi is threshold of the i-th hidden nodes. L is the number
of hidden nodes.
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Fig. 5. In order to mitigate multipath effects, we propose a new feature
(MDV) to determine the impact of multiple paths on the signal at different
frequencies using ELM.

In ELM, the parameters (ωi, bi) of the hidden nodes are
randomly assigned without any iterative tuning, which makes
it faster than traditional SLFNs and shows good generalization
performance in real-world application [27]. Since we already
know the feature vector xi and (ωi, bi) is randomly assigned,
the hidden layer output matrix H can be easily calculated

H (ω1, ...,ωL, b1, ..., bL,x1, ...,xM )

=

 g (ω1 · x1 + b1) · · · g (ωL · x1 + bL)
...

. . .
...

g (ω1 · xM + b1) · · · g (ωL · xM + bL)


M×L

β =

 βT1
...
βTL


L×m

,T =

 tT1
...
tTM


M×m

Then, Equation 13 can be written compactly as

Hβ = T (14)

Refer to the analysis of constrained-optimization-based ELM
in [28], the output weight matrix β is established as

β =

(
I

C
+HTH

)−1
HTT . (15)

Where C is a user-specified parameter (regularization factor),
which makes the solution more stable but introducing bias. So,
the parameter 1/C should also be a very small value while
still maintaining model stability. In our system, we have found
that better results are usually achieved at small parameter 1/C.
For simplicity, C is specified as 215.

In our experiments, we adopt a sigmoid function as the
nonlinear activation function g(·). The number of hidden node
is set as L = 50. All the hidden-node parameters (ωi, bi)
are randomly generated with the uniform distribution. The
dimension of feature vector xi is set as n = 20. Since we
only use the RER as the training target value to label a feature
vector, the length of output training target vector t is set as
m = 1.

In the off-line phase, we collect 1200 training samples in
multipath fading indoor environments, and calculate the output
weight matrix β using Equation 15. In the on-line phase,
we use the speaker to transmit signals at Nf frequencies.
In each frame, we calculate input feature vector x(i)′ at
the i-th frequency. The predicted RER (denoted by t′ (i))
corresponding to x(i)′ can be denoted as

t′ (i) = x (i)
′
β. (16)

The predicted ranging error rate vector, i.e. t′ =
[t′ (1) , t′ (2) , ..., t′ (Nf )] evaluates the impact of multipath
fading to the phase-based ranging at different frequencies. In
each frame, we select the signal with the smallest RER to esti-
mate the movement distance in the frame. The pseudocode of
CAME algorithm is in Algorithm 1. Note that, compared with
signatures based methods which collect features in off-line
phase, and estimate the position of the devices using machine
learning technologies, our method leverages the features to
select a signal with the smallest impact of multipath fading,
and then use a model-based method to tracking devices’
motion. Thus, our work is less influenced by the database
collected in off-line phase.

An example to illustrate the migration of multipath fading
effects is shown in Figure 5. A speaker continuously transmits
acoustic signals at 18 KHz, 18.8 KHz and 19.6 KHz at the
same time. Then, we move an Android smartphone away
uniformly from the speaker at the distance of 1 meter. The
smartphone obtains the signals frame by frame, and each
frame has 512 sampling points with 48 KHz sampling rate.
we calculate the RER in each frame, as shown in Figure
5b. During the movement, we measure the moving distance
using the method in Section III-D at each frequency, and the
moving distance at each frequency should be the same in each
frame if there are no multipath fading effects. However, due to
multipath fading effects, the measured distances are obviously
different at 18 KHz and 19.6 KHz in Frame A, and at 18 KHz
and 18.8 KHz in Frame B, as shown in Figure 5a. In Frame A,
the RER of the signals at 18.8 KHz are obviously smaller than
18 KHz and 19.6 KHz. The larger RER indicates larger ranger
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error caused by multipath fading, which is consistent with the
measurements in Frame A, as show in Figure 5a. Thus, the
signals at 18.8 KHz can be selected to estimate the moving
distance due to the smallest RER in the frame. In Frame B,
the RER of the signals at 19.6 KHz is obviously smaller than
18 KHz and 18.8 KHz, so that the signal at 19.6 KHz is
chosen to estimate the distance. We compare our estimation
with the actual distance, and the result indicates that CAME
could evaluate and mitigate the impact of multipath fading
effects.

Algorithm 1: CAME algorithm
Input: Distance change estimated by the phase changes of signals at

different frquenceis from a speaker;
Output: Moving distance relative to the speaker;

1 foreach frame do
2 foreach frequency do
3 Calculate the distance to the center of each point in the

nomailized scatter diagram using Rα and Rβ ;
4 Calculate the number of points between adjacent concentric

circles;
5 Extract MDV as the input feature vector of ELM;
6 Use ELM to estimate RER at each frequency which

indicates impact of multipath fading on the signal;
7 end
8 Calculate the moving distance using the signal with the smallest

RER;
9 end

10 Sum the calculated the moving distance in each frame, and obtain
moving distance relative to the speaker;

V. MOTION TRACKING ALGORITHM

In this section, we first use a calibration scheme to obtain
a reference position. Then, we combine the initial position
with the fine-grained distance change to enable 2-D motion
tracking.

A. Estimating Reference Position

The phase based algorithm in Section III-D only measures
the relative distance change, which is not sufficient for motion
tracking. We cannot determine actual position only using the
relative distance change due to the lack of the initial position.
One way is to measure using some additional tools, such as
ruler, hand-hold distance finder. However, those methods are
cumbersome and error-prone. In this subsection, we propose a
calibration method to estimate reference position. We choose
two of the speakers assigned with different frequencies to
estimate the initial position. Without loss of generality, we
assume that two speakers A and B are placed along an x-axis.
The coordinates of A and B are given, as shown in Figure 6.

We let a user move a smartphone parallel to the x-axis with
unknown distance a. As the mobile is moving close/away
each speaker, the distance between the smartphone and the
speakers reduces/increases. When smartphone moves to the
C/D position, the relative distance between A/B and the
smartphone has minimum value. So we can determine the
position of C and D on the moving path when the distances
become minimum. We could calculate the difference dac of
the relative distance between the smartphone and speaker A
at C and D. Due to the property of a rectangular triangle,

x

Distance 

from A

x

x

y

A B

C D
a c

b

Distance 

from B

Movement

Fig. 6. Estimating reference position by moving a smartphone parallel to the
x-axis.

a2 +b2 = c2 and c = dac+a, the distance a can be calculated
by

a =
b2 − d2ac

2dac
(17)

Where b denotes the absolute distance between A and B, and
c denotes the absolute distance between A and D. Thus, the
coordinates of C and D can be obtained, and can be used as
the reference position. To improve the accuracy, we can sweep
the smartphone along the moving path multiple times, and use
the mean positions as the estimation for C and D.

B. Tracking Motion by Computing Real-time Position

In order to track the device’s motion, we should obtain the
real-time position of the devices.

The range measurement between the smartphone and the
i-th (i = 1,2,3,...,N ) speaker is denoted as d̂i, where N is the
number of speakers. Let [x, y]

T be the unknown coordinate
of the smartphone, and let [xi, yi]

T be the known coordinate
i-th speaker. The known coordinate of the reference position
introduced in the previous subsection is [xR, yR]

T .
The error-free distance change between the smartphone and

i-th speaker relative to the distance at reference position is
calculated as

di =

√
(x− xi)2 + (y − yi)2 −Ri (18)

where Ri =

√
(xR − xi)2 + (yR − yi)2. The measurements

of the range differences are modeled by

d̂i = di + εi, i = 1, 2, 3, ..., N (19)

where εi is the measurement error of d̂i.
The LS error function is then defined as the difference

between the measured and true values

e = d̂− d (20)

where d̂ =
[
d̂1, d̂2, ..., d̂N

]T
and d = [d1, d2, ..., dN ]

T .

We define vector Λ ,
[
x y x2 + y2

]T
. Then, we can

rewrite Equation 20 in matrix form as

e = AΛ− b (21)
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where

A =


−2x1 −2y1 1
−2x2 −2y2 1

...
...

...
−2xN −2yN 1

 ,b =



(
d̂1 +R1

)2
− x21 − y21(

d̂2 +R2

)2
− x22 − y22

...(
d̂N +RN

)2
− x2N − y2N


Finding the LS solution based on the LS criterion of Λ is

a linear minimization problem, can be as

min
Λ

[AΛ− b]
T

[AΛ− b] . (22)

According to LS algorithm, the solution minimizing is given
by

Λ =
(
ATA

)−1
ATb. (23)

The unknown coordinate of the smartphone can be expressed
as

[x, y]
T

= [Λ (1) ,Λ (2)]
T
. (24)

Note that the smartphone’s coordinate is updated in each
sampling time, and we can track the smartphone’s motion
using the real-time coordinate. The pseudocode of our motion
tracking algorithm is in Algorithm 2.

Algorithm 2: RAMTEL’s motion tracking algorithm
Input: An audio signal segmentation acquired by smartphone’s

bottom microphone;
Output: Updated smartphone position;

1 if uninitialized then
2 Calibrate phase offsets due to asynchronous system clocks

between sender and receiver;
3 Find a reference point;
4 end
5 foreach speaker do
6 foreach frequency do
7 Apply BPF to measure each frequency independently;
8 Use Park transformation to calculate the real-time phase of

received signals;
9 Calculate the phase change relative to the phase at

reference position; Estimate the 1-D distance change
based on the phase change at different frequencies;

10 end
11 Use CAME to mitigate multipath fading effects based on the

estimated 1-D distance at different frequencies;
12 Update the relative distance to the reference point using the

distance change;
13 Update the absolute distance to each speaker using the relative

distance and the position of reference point;
14 end
15 Apply LS algorithm to calculate the localization and update the

smartphone position;

VI. IMPLEMENTATION

We develop RAMTEL on two platforms. The first platform
consists of a speaker connected with a GIGABYTE desktop
with Intel I7 CPU and 8 GB RAM, and is used to evaluate
the accuracy of 1-D ranging and the performance of CAME.
In order to have larger degree of freedom and achieve 2-D
tracking, the second platform adds multiple speakers on the
basis of the first platform, and is used to demonstrate the
feasibility of motion tracking in real-time. Specifically, the
smartphone is a ZTE B2015 mobile phone with Android 5.1

Operating System. The desktop has a VIA sound card which
could support at most 8 speakers. Some PHILIPS PA311/93
speakers ($8 each) connect to the desktop and transmit inaudi-
ble signals at different frequencies, each at certain frequency.
We use the bottom microphone of the smartphone to receive
the acoustic signals with the sampling rate of 48 KHz, which
is supported by most mobile devices. Then, we use the bottom
microphone of the smartphone to record the sound wave with
the sampling rate of 48 KHz, which is supported by most
smartphones. Inspired by the task scheduling in fog networks
[29] [30], we offload the computation of ranging and tracking
to the desktop in order to extend batter lifetime.

(a) Testbed setup for 1-D rang-
ing

(b) Testbed setup for the performance eval-
uation of motion tracking.

Fig. 7. Experimental Setup

VII. EVALUATION

For 1-D ranging, we move the smartphone close/away the
audio source, and record the distance change during the move-
ment. Since the distance between them changes over time, we
use a rule along the moving path that collects the ground truth
data, as shown in Figure 7a. We use the platform to evaluate
the error of 1-D ranging, the multipath effects mitigated by
CAME. Then, we compare the performance of multipath
mitigation using the linear regression algorithm and CAME,
and evaluate the impact of different MDV lengths on the
measurements. In order to evaluate RAMTEL’s performance
of detecting small and slow movement, we use the platform
to monitor the respiratory rate of some volunteers at different
distances. Then, we evaluate impact of typical noises in indoor
environments on the measurements, such as ambient noise,
discussion noise, and music noise, and the performance of 1-
D ringing in NLoS scenarios. Finally, we also move obstacles’
movement near the receiver to estimate the impact of dynamic
reflection signals on the measurements.

For 2-D tracking, we use a three-speaker system as shown
in Figure 7b. The separation between adjacent speakers is 70
centimeters. Each speaker is allocated 0.8 KHz bandwidth with
200 Hz interval. The three-speaker system occupies 17.2-19.4
KHz, which are virtually inaudible to most people. We first
evaluate the performance of motion tracking by evaluating the
median error between the trajectories tracked by RAMTEL
versus the ground truth trajectories recorded by a camera.
Then, we compare our method with Doppler based and FMCW
based methods. Finally, we evaluate the impact of training set
size on performance of motion tracking. The ranging, tracking,
and visualization, are both done on-line in real-time.

A. Experimental Results
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1) The accuracy of 1-D ranging: RAMTEL achieves an av-
erage movement distance error of 2 mm when the smartphone
moves for 40 cm at a distance of 1 m. In our experiments,
we use RAMTEL to measure the distance changes between
a smartphone and a speaker, and use a rule to collect ground
truth data. The smartphone’s initial position is 1 m away from
the speaker, and moves away from the speaker for a distance
of 40 cm. Figure 8a plots the Cumulative distribution function
(CDF) of the 1-D relative distance measurement error for 100
measurements. The median error is 2 mm, and 90-th percentile
error is 6 mm. We also compare our approach with CAT, a
moving distance measurement approach based on FMCW [11].
Results show that our approach outperforms CAT in terms of
distance measurement accuracy by 50% on average.
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Fig. 8. The accuracy of 1-D ranging, and the performance of multipath fading
mitigation

2) Performance of multipath mitigation: In this experiment,
we examine the performance of multipath mitigation using
CAME. Particularly, we conduct following experiments: we
use the speaker to play the sinusoidal audio signals at four
frequencies. We first estimate the moving distance using
the signal at one of the frequencies without using CAME,
and using CAME with four carriers, respectively. Then, we
calculate the measurement error at different distances. The
comparisons of the results from the estimation without/with
CAME are shown in Figure 8b. We collect the data from 50
measurements for single-carrier and multi-carrier respectively.
We observe no significant difference between two cases at a
distance of 30 cm, and the median error is about 1.5 mm,
which indicates that multipath fading effects have limited
impact at the distance. The median error increases as the
distance increases because the effects of multipath fading
are strengthened as the transmission distance increases. The

median error of using CAME is significantly lower than
without mitigating multipath fading effects. When the distance
is 220 cm, CAME reduces median error from 14 mm to 6 mm.
The results indicate CAME can improve the ranging accuracy
and the robustness against effects of multipath fading.

We compare the performance of CAME with the linear
regression based algorithm proposed in [25], as discussed in
Section IV-A. In our experiments, a speaker transmits signals
at different number of carriers, and we calculate the median
error of ranging at a distance of 1 meter. We repeat each
measurement for 50 times, and results are shown in Figure
8c. When 2 carriers are used, CAME, and linear regression
algorithm have similar performance which is close to with
using any multipath mitigation algorithm, because both the
algorithms require multiple carriers to estimate the accuracy
moving distance under effects of multipath fading, and 2
carriers cannot satisfy the requirement. We can see that the
median error of using CAME reduces as the number increases.
When four carriers are used, the error reduces to 2 mm,
while linear regression based algorithm cannot reduce the
median error. This is because linear regression based algorithm
requires wider bandwidth to ensure good regression results,
while CAME has more stable and robust performance using
limited bandwidth. As we would expect, the results indicate
RAMTEL can achieve good ranging performance with a
limited bandwidth of acoustic signals (e.g., 0.8 KHz), which
ensures great robustness for practical usage on mobile devices.

We also examine the impact of the length (Nc) of MDV used
in ELM (Equation 10 in Section IV-A). The aim of CAME
is to select the signal with the smallest impact of multipath
fading effects from the signals at different frequencies. So, in
our experiments, we use the probability of selecting incorrect
signal (not the smallest one) to indicate the impact of Nc to our
system. We use the same experiment setup in Section VII-A1.
We collect training samples using different length of MDVs.
In on-line phase, ELM estimates the RER using Equation 16
in Section IV-A at each frequency using the same length of
MDV as its training samples. Meanwhile, we collect the actual
values of RER (Equation 12 in Section IV-A) corresponding
to the estimated values. In each frame, the smallest actual
value and estimated value at the same frequency indicates
that CAME selects the correct signal to estimate the moving
distance. Figure 8d plots the probability of incorrect selection
as we vary the length of MDV used in the on-line and off-line
phase of the CAME. When 5 features are used in training and
estimating RER, as the Nc increases, the probability reduces
significantly. With 30 features in a MDV (the default value
in our evaluation), the probability of selecting an incorrect
signal reduces to 6%. We calculate the probability by repeating
100 measurements for each length of feature vectors, and the
results indicate that the MDV would be extracted as the feature
for ELM and reduces computation overhead effectively.

3) The detection of small and slow movement: RAMTEL
could detect small and slow movements in real-time, because
it uses the phase change of received signals to estimate moving
movement. We use the accuracy of respiratory rate monitoring
to evaluate RAMTEL’s performance of detecting small and
slow movement. We recruit six participants (3 females and 3
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Fig. 9. Small and slow movement monitoring.

males) between the ages of 24-28. The participants are asked
to wear a cloth coat with a phase-compensated smartphone
placed in its chest pocket, and sit at a distance of 1, 3, and
5 meters to a speaker, as shown in Figure 9a. We calculate
participants’ respiratory rate according to the ups and downs of
their chest which lead micro movement to the smartphone. The
micro movement direction and amplitude can be measured by
RAMTEL, as shown in Figure 9b. We also ask the participants
to take a stopwatch to record the times of inhalation or
exhalation which could calculate participants’ respiratory rate
and can be seen as an actual value. We collect the data from 5
minutes’ measurement for each user, and compare RAMTEL’s
measurement with the actual value, the average monitoring
accuracies for each user are shown in Figure 9c. The average
respiratory rate monitoring accuracies for different users at the
distance of 1 meters are in the range of 96%-100%. When the
distance increases to 5 meters, the monitoring accuracies are
in the range of 92.8%-96%, with an average accuracy of 94%
over all users. The results indicate that RAMTEL could detect
slow and sight movements accurately.

4) Performance under noisy conditions: In our experi-
ments, we evaluate the performance of RAMTEL under dif-
ferent noisy conditions: ambient noise in office area, speaking,
self-interference. First, we measure ranging error in the labo-
ratory with ambient noise. The ambient noise in the laboratory
is mainly caused by the outlets of the central air conditioner,
computer fans, and some other electrical devices. Second, we
recruit a couple of students to have a group discussion at a
distance of 30 cm from the smartphone. Finally, we use the
smartphone to play different kinds of music (e.g., Pop, Classic,
and Rock) together to examine the impact of self-interference.
Figure 10 plots the Power Spectral Density (PSD) measured
by a smartphone at a distance of 1 meter from a speaker
in different noisy conditions. The results show that human
discussion significantly improves the PSD from -100 dB/Hz
to -50 dB/Hz on average at the frequencies less than 1 KHz.
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Fig. 10. Power spectral density of three noise cases measured at 1 meter and
1-D ranging performance of the cases.

Music played by the smartphone improves the PSD in a wider
range of frequencies, from 100 Hz to 16 KHz. However, even
though the ambition noise and human has significant impact
on the PSD, the PSD of audio signal for relative distance
measurement couldn’t be affected and still has -50 dB/Hz on
average, so that the signal can be easily detected. We measure
the median error of ranging in different conditions, and repeat
the experiment 50 times for each case. Figure 10d shows that
the performance for all three cases at different distances are
similar. These experimental results indicate that RAMTEL
is robust against common indoor noises and not affects the
normal use of the smartphone.
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Fig. 11. The movements of box and human near the receiver have limited
impact on our measurements.

5) Impact of movement in the surrounding: In our experi-
ments, we examine the impact of movement in the surrounding
by measuring the accuracy of 1-D measurement while we
move different objects near a RAMTEL-enabled smartphone.
Figure 11a shows the sample measurement when we move a
paper box (20cm× 15× cm× 5cm) toward/away from the
smartphone perpendicular to the direction of audio propaga-
tion. We can observe that the distance remains static when
the box is not moving and varies like sinusoids when the
box moves towards/away from the smartphone. The human
movement at 20 cm from the smartphone also brings fluctu-
ation to the distance measurement, a sample measurement as
shown in Figure 11b. We also move our hands at the same
distance, and observe the similar fluctuation as that caused by



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2903211, IEEE Internet of
Things Journal

13

RAMTEL Ground truth

(a) Trajectory of double-circle

RAMTEL Ground truth

(b) Trajectory of rectangle

AAmouse CAT RAMTEL
Different approaches

0

20

40

60

80

M
ed

ia
n 

er
ro

r 
(m

m
)

70 mm

6 mm
3.7 mm

(c) Median error for motion tracking
using different algorithms

50 100 500 1200
Number of training samples 

0

2

4

6

8

10
T

ra
ck

in
g 

er
ro

r 
(m

m
)

(d) Tracking error using different
number of training samples

Fig. 12. Motion tracking performance.

human movement. We repeat this experiment 50 times, and
find that the movements near the receiver has slight impact
on our measurement (less than 0.5 mm on average). This is
because that the fluctuation is caused by the change of reflected
paths received by the smartphone, and we use direct-path to
measure the distance. Further, the fluctuation doesn’t affect
the measurement permanently, and the ranging error will be
eliminated when the object moves away from the smartphone.

6) Performance of 1-D ranging in NLoS scenarios: RAM-
TEL leverages the phase change of LoS signals to estimate
moving distance. However, it doesn’t mean that the LoS
signals can’t be blocked, and it comes to whether the LoS
signals are stronger than NLoS signals. In order to evaluate the
performance of 1-D ranging in NLoS scenarios, we conduct
our experiments in three scenarios. Scenario 1: we measure the
median ranging error at different distances without objects that
block the LoS signals as ground truth data. Scenario 2: we put
the smartphone in a cloth bag as a receiver which imitates a
smartphone placed in a pocket, then we move the bag with the
smartphone to evaluate the ranging performance as Scenario
1. Scenario 3: we put a paper box (30cm× 21× cm× 5cm)
at a distance of 50 cm to the speaker so that the LoS signals
are blocked while NLoS signals can be received, and conduct
the same experiments as Scenario 1. Figure 13 shows the
experimental setup and results of experiments in the scenarios
at different distance, specifically 1 m, 1.3 m, and 1.6 m. We
repeat the experiment at each distance for 50 times in each
scenario and the results show that the median errors increase
in Scenario 2 and Scenario 3 compared with Scenario 1. The
median errors in Scenario 2 are obviously less than that in
Scenario 3, and are allowable for practical applications, such
as real-time gesture recognition. In Scenario 3 , the median
ranging errors increase significantly, and grow to 80 mm at

(a) A smartphone placed in a cloth
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(b) A paper box placed between a
speaker and a smartphone
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Fig. 13. 1-D Ranging performance of in the NLoS scenarios.

the distance of 1.6m. This is because that the LoS signals
and NLoS signals have similar fading through the cloth bag
in Scenario 2 and the phase change of LoS signals can be
approximately calculated, while the phase change of LoS
signals can’t be obtained in Scenario 3 due to the obstruction
of the paper box. In order to overcome the challenge of large
median errors in Scenario 3, we consider to use extra-speakers
as source to make sure that the smartphone can obtain LoS
signals from at least three speakers. Then, the smartphone
determines which signal is LoS and choose all the LoS signals
to track its motion, and we leave this in future works.

7) The accuracy of motion tracking: We use a RAMTEL-
enabled smartphone to draw a double-circle, and a rectangle
in 2-D space. We use a camera to collect the ground-truth
trajectories of the smartphone, and the experimental setup is
shown in Figure 7b. We compare the measured trajectories
versus the original trajectories to quantify the accuracy. Then,
we evaluate the tracking error by measuring the average
least perpendicular distance of each point in the trajectories
estimated by RAMTEL with the closest point in the ground-
truth trajectories. We repeat the experiment 50 times for
each pattern, and compute the average error in each grid by
averaging across the experiments. Figure 12a and 12b show
the sample results of the estimated trajectories and ground
truth trajectories. We compare the median error of tracking
with CAT and a Doppler effect based method [9] (denoted
by AAMouse), as shown in Figure 12c. The median error
of RAMTEL is 3.7 mm, while that of CAT and AAmouse
are 6 mm and 7 cm respectably. The results show that
the tracking accuracy of RAMTEL out-performs CAT and
AAMouse significantly.

8) Impact of training set size: In order to estimate the
impact of training set size, we evaluate the tracking perfor-
mance using different number of training samples. In the off-
line phase, we collect 1200 training samples (default value
in our evaluations), and choose different number of them to
generate output weight matrix using Equation 15 in Section
IV-C. In the on-line phase, RAMTEL tracks the smartphone
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in 2-D plane using the output weight matrices generated by
different number of training samples. Figure 12d plots the
median error of motion tracking and the vertical lines denote
standard deviation corresponding to the median error. The
results indicate that RAMTEL is not evidently depend on the
size of training set, because only 50 training samples could
provide a fine-grained motion tracking with about 4.5 mm
median error. Further, the results also show that the increase
of training samples could improve the performance of motion
tracking significantly since it reduces the deviation of tracking
error and provides more stable results.

VIII. LIMITATIONS

In this section, we discuss some limitations of our current
system and potential directions for future work. First, the total
bandwidth of sound is limited on smartphone. In RAMTEL,
each speaker is allocated 0.8 KHz bandwidth separated by
200 Hz guard band to avoid carrier interference. The guard
band and the band-pass filter used in our system limit the
maximum movement speed (about 30-40 cm/s) of devices that
could be accuracy tracked. In future work, we plan to reduce
the limitation of speed by improving bandwidth. For example,
we plan to use a smartphone as source and some microphones
as receivers, and, so that different degrees of freedom can share
the total bandwidth.

Second, RAMTEL selects the signals with the smallest RER
from a speaker to estimates the moving distance between the
speaker and mobile devices. However, there are a few cases
where multipath fading effects are strong, and the signals at
all the frequencies are interfered by the effects, so RAMTEL
cannot obtain accurate moving distance. This can occur when
the receiver is far from the speaker or direct path signals are
blocked by impenetrable obstacles, such as human body and
wall. Note that we can easily obtain accurate moving distance
when the receiver moves at a distance of 2 meters as shown in
Figure 8b. It’s easy to satisfy in most IoT devices in smart city
environments, since the IoT devices that required to interact
with users are usually placed in a place that is easy to reach.

IX. CONCLUSIONS

This paper presents the system design of RAMTEL, which
provides a fine-grained mobile interaction solution for com-
mercial mobile devices. We propose a phase calibration
method that can compensate the phase offset between devices
accurately, and calculate the moving distance based on the
phase change of acoustic signals. Based on Extreme Learning
Machine, we propose a novel algorithm to mitigate multipath
effects, and obtain the accurate phase change of LoS signals
in multipath fading environments. In this way, we implement
a prototype of RAMTEL using a commercial smartphone and
some speakers connected with a desktop. The prototype could
track the motion of the smartphone with mm-level accuracy,
even if the smartphone moves slowly and slightly. We conduct
systematic evaluation based on the prototype. Experiment
results validated our idea as well as the system design.
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