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With the rapid development of technology and application for Internet ofThings (IoT), Low-PowerWireless Personal AreaNetwork
(LoWPAN) devices aremore popularly applied. Evaluation of power efficiency is important to LoWPANapplications. Conventional
method to evaluate the power efficiency of different LoWPAN devices is as follows: first measure the current of the devices under
working/idle/sleep state and then make an average and estimation of the lifetime of batteries, which deeply relied on the accuracy
of testing equipment and is not that accurate and with high cost. In this work, a low-cost, real-time power measurement platform
called PTone is proposed, which can be used to detect the real-time power of LoWPAN devices (above 99.63%) and be able to
determine the state of eachmodule of DUT system. Based on the PTone, a novel abnormal status diagnosis mechanism is proposed.
The mechanism can not only judge abnormal status but also find accurate abnormal status locating and classify abnormal status
accurately. According to the method, each state of Device Under Test (DUT) during wireless transmission is estimated, different
abnormal status can be classified, and thus specific location of abnormal module can be found, which will significantly shorten the
development process for LoWPAN devices and thus reduce costs.

1. Introduction

The rapid development of information technology, for exam-
ple, 3G/4Gmobile communication technology and the Inter-
net of Things (IoT), have largely changed our everyday lives.
LoWPAN devices are more popularly developed for embed-
ded applications in biomedical electronics, wireless sensor
networks, and environment monitoring [1–6]. LoWPAN de-
vices are indispensable for modern electronic applications,
and numerous hardware/software techniques have been
developed for drastically reducing functional power dissipa-
tion [7–9].

In order to reduce the amount of unused power from
existing devices, engineers engaged in the development of
battery power-supply device are facing huge pressure to
reduce the consumption of power. Many methods for reduc-
ing power consumption of the system have been proposed
[10–12]. They are therefore exploring component level
dynamic power consumption, which is difficult to measure,

especially for low-power devices used in IoT enabled prod-
ucts, because of the limited dynamic range, large measure-
ment noise, and limited bandwidth. For example, most of
the battery-powered devices have low-power sleepmode that
consumes very little supply current such as less than 1𝜇A,
while the active mode usually requires more than 10mA
current. It is difficult to measure such a wide dynamic range
of currents with a singlemeasurement. Otherwise, the testing
of these low-cost, low-power devices is a daunting task; since
such devices are cost-sensitive, test cost is a major considera-
tion [13, 14].

For the development of low-power devices and applica-
tions, power (or current) measurement is important.Thus, in
order to fulfill the requirements for power consumption
reduction, precise dynamic current waveform measurement
and debug are required. In this paper, a low-cost, real-time
current measurement system is proposed which is capable
of digitizing a wide range of current, classifying different
abnormal status, and providing specific location of abnormal
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module and significantly shortening the development pro-
cess. The system consists of a power measurement platform
called PTone and a novel abnormal status diagnosis mecha-
nism which is proposed based on PTone.

A powermeasurement platform called PTone can be used
to detect the real-time power of LoWPANdevices and be able
to determine the state of each module of DUT system which
is meaningful to the R&D on LoWPAN devices/applications.
By comparing the power consumption of well-performance
device and DUT in corresponding state of the device system,
the abnormal status can be estimated and detected. Our hard-
ware implementation approach would be described in detail
in Section 3.

In traditional abnormal status detection, the usual prac-
tice is just judging abnormal status or not. No approaches are
developed to find accurate abnormal status locating and
abnormal status classification for IoTdevices. In order to clas-
sify different abnormal status, a novel abnormal status diag-
nosismechanism based on sliding-window feature extraction
(SWFE) is proposed based on PTone.

Although much research has been done in designing sys-
tems for the detection of abnormal status to perform feature
selection, to the best of our knowledge, no specific approaches
have been developed for IoT devices. The work in [15, 16]
developed a grained approach to perform feature selection,
but enormously increasing computational complexity. A few
attempts have been proposed. Wang et al. [17] developed a
system to implement Bloom filters which avoids some of the
computational complexity. Despite the improvement in com-
plexity, effective Bloom filter implementation may not be
possible on resource constrained embedded devices [18].
Additional approaches at improving computational complex-
ity have been explored. McPAD [19] measures features using
a sliding window to analyze pairs of bytes. References [20, 21]
also use a sliding-window approach to extract features from
the payload. Although these improvements obtain reliable
detection results, their approaches are not able to reduce
computational complexity.

First, we design a work state detection algorithm
(WSDA), which is able to approximate start and end points of
active time in work state by continuously moving a sliding
window on the observed waveform. According to the start
and end points of active time in work state, we can extract the
waveform series in the work state for further analysis instead
of using the whole waveform. PTone chooses features based
on unique features of each active period inwork state of LoW-
PAN devices, which allow us to extract the features of power
waveformmore accurately.Then the Support VectorMachine
(SVM) is used to compare the profiles of measured waveform
data series for classifying different abnormal status. Finally,
we investigate whether PTone can accurately classify DUT
system status based on the waveform features extracted above
and verify classification accuracy through some experiments.
The system considers different aspects of testing low-power
device, which cannot be measured by the previous measure-
ment due to the fact that they cannot detect the broadband
low level of current waveform.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of system description. Section 3

Server

Hard platform LoWPAN device (DUT)

PTone

Figure 1: System composition.

describes our hardware implementation approach for PTone
in detail. Section 4 describes our abnormal status classifi-
cation algorithm in detail and provides evaluation of the
performance of our approach. Section 5 concludes the paper.

2. System Description

2.1. Overview. Nowadays, there is strong request to design a
real-time power measurement platform for LoWPAN
devices, with applications to sensing in environmentswhere it
is difficult or impossible to change batteries and where the
exact position of the devices might not be known.

We propose a power measurement platform called PTone
which can be used to detect the real-time power of LoWPAN
devices and be able to determine the state of each module of
DUT system which is meaningful to the R&D on LoWPAN
devices/applications. By comparing the power consumption
of well-performance device and DUT in corresponding state
of the device system, the abnormal module can be estimated
and detected.

PTone consists of a low-cost power detection hardware
platform and a service (such as a laptop), as shown in Figure 1.

In order to reduce the power consumption, LoWPAN
devices’ wireless communication is typically divided into
work state and sleep state. In work state, LoWPAN devices
have several periods of active time: receiving beacon signal
from a device, replying Acknowledgement (ACK) of the bea-
con signal, sending data packet to the devices, and receiving
ACK of the transmitted data packet. In sleep state, LoWPAN
devices enter low-power status to extend battery life.

When a LoWPAN device receives a wireless connection
request from source device, LoWPAN device takes step into
work state to send ACK and then keeps quiet for a short
time to wait for the preparation of source device. Work states
and sleep states constitute a period of wireless communica-
tion, as shown in Figure 2. We can evaluate the status of
LoWPAN devices system according to the impact of power
consumption on the power waveforms change because
different components in the devices have unique power
consumption.
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Figure 2: Typical working process of LoWPAN devices.

However, there are three key technical challenges. The
first technical challenge is to segment the powerwaveforms to
identify start time and end time of the active period in work
state. We studied the characteristics of typical power wave-
forms of different kind of LoWPANdevices.Weobserved that
the power waveforms are periodic and power consumption
has obvious significant increase which causes power pulses
during each active time in work state. We also observed that
the period of DUT system is stable, and the intervals and
amplitude of power pulses also are regular. Based on this
observation, we design a power waveform feature extraction
algorithmwhich is able to approximate start and end points of
active time in work state by continuously moving a sliding
window on the observed waveforms.

The second technical challenge is to extract the feature of
power waveforms for generating classificationmodel for each
status of theDUT system. As the power consumption of com-
ponents is similar, it is hard to distinguish the noise signal in
the waveformswhich is introduced by various factors, such as
circuit noise of the DUT andmeasuring platform. Some con-
ventional features such as maximum peak power, RMS devi-
ation, the intervals between power pulses, entropy, and the
number of power pluses cannot be directly used for the clas-
sification. To address this challenge, we apply a Hampel filter
on the power consumption waveforms to extract the valuable
signals which contain the power change caused by system
perform and detect and remove the outlier signal caused by
digital circuit noise.Hampel filter computes themedian value
of the sample and its surrounding samples. It also estimates
the standard deviation of each sample about its window
median using the median absolute deviation which can
used to remove abnormal point in the waveform series.

The third technical challenge is to compare the profiles
of filtered waveforms, which is hard to realize in real-time
based on Commercial-Off-The-Shelf (COTS) power detec-
tion platformwhich usually just provides real-time display or
records of the power consumption, so a kind of low
complexity algorithm for feature comparison needs to be
designed. The mean values of power in each work state align
with each other because the estimated value of start and end
points are different from the true value which would lead to
much higher errors in mean value. Moreover, the interval
time of different work state is fluctuant over time, and there
may be different interval time ofwork state in the same system

status. Therefore, mean value of power and interval time of
work state are not enough to identify the system statues. We
need to combine them with more waveform features to clas-
sify system statuses.

To address this challenge, PTone uses extracted features to
train a Support VectorMachine (SVM) and achieves the clas-
sification of multiple system status and uses maximum poste-
rior probability (MAP) obtained by the SVM to estimate the
system status. MAP can be used to obtain a point estimate of
an unobserved quantity based on measured data.

The key novelty of this paper is on proposing the first low-
cost powermeasure platform and an effective status detection
method for LoWPAN DUT system. In this paper, we have
shown that fine grained status detectionmethod is possible by
analyzing and processing measured power waveforms prop-
erly. We also have taken some experiments to prove that
the techniques proposed in this paper can be used for the
proposed low-cost power measure platform. Examples
include the detection of two common faults of microcom-
puter control unit and two often encounter problems in radio
frequency module in different type of LoWPAN DUTs. Our
PTone techniques can be potentially used to detect a wider
range of system status by building a more complete compo-
nent power consumption model in the future.

3. Hardware Implementation

3.1. Hardware Overview. The block diagram of the proposed
current measurement platform is shown in Figure 3. As seen
from the figure, the block diagram mainly consists of five
parts:

(1) Analog signal detection circuit
(2) Programmable-gain instrumentation amplifier

(PGA)
(3) Analog-to-digital converter circuit (ADC)
(4) Microcontroller unit (MCU)
(5) Power-supply module

Signal detection sensor in this figure represents a sensitive
resistor with very small resistance value. According to the
voltage across this sensor, the power consumption of DUT
can be calculated accurately. However, the instantaneous
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Figure 3: Block diagram for implementation.

current of LoWPAN devices is usually very small, which
makes it hard to measure the current directly.

Therefore, a controllable gain amplifier is required to
amplify the low voltage at the signal detection sensor output,
which is represented by PGA in Figure 3. Then the analog
signal amplified by PGA needs to be sampled and converts
to digital signal by analog-to-digital converter circuit, which
is represented by ADC in the figure.

In order to achieve wide dynamic range of gain, wide
bandwidth, and low noise and high linearity and digitize a
wide range of signals, it is necessary to set the value of refer-
ence voltage and input gain of PGA and output data rate of
ADC to reasonable values by system control module repre-
sented byMCU in the figure.The functional characteristics of
proposed system are shown in Table 1.

3.2. Programmable-Gain Instrumentation Amplifier (PGA).
In order to obtain suitable output voltage that can be digitized
directly, PGA281 is used as the instrumentation amplifier
with digital gain control in Figure 3. PGA281 offers excellent
DC precision and long-term stability using modern technol-
ogy with internal filters thatminimize noise.The output stage
connects to the low-voltage supply. The PGA is carried out
by improved parallel feedback based Flipped Voltage Fol-
lower (FLV) to achieve wide dynamic range of gain, wide
bandwidth, and low noise and high linearity.

The input voltage gain of PGA281 is in the range of 0.125
to 128 in binary steps. The output stage has a gain adjustment
factor, 1 or 1.37, to adjust gain to the optimal value. Desired
gain can be selected by controlling digital input G4:G0 and
the gain of PGA is set to 𝐴PGA.

In the hardware interface circuit of the proposed system,
we use a resistor with resistance 𝑅, which is very small and
sensitive to the change of current.The voltage at the resistor is
represented by𝑈𝑅, and the current across the resistor is given
by

𝐼𝑅 = 𝑈𝑅 × 1𝑅. (1)

Table 1: Functional characteristics.

Key features Specification
Current measurement range 0.5 uA to 200mA
Power measurement range 1.65 uW to 10W
Output data rates 10 to 14 kSPS
Maximum CMRR 140 dB
Operating temperature −40∘C to 105∘C

𝑅PGAin stands for the input impedance of PGA. And𝑅DUTin stands for the input impedance of DUT. Similarly, the
current across the DUT is given by

𝐼DUTin = 𝑈𝑅 × 𝑅 + 𝑅PGAin𝑅 × 𝑅PGAin
. (2)

The output voltage of 𝑈ADCin the PGA is given by

𝑈PGAout = 𝐴PGA × 𝑈𝑅 = 𝐴PGA𝐼DUTin𝑅 × 𝑅PGAin𝑅 + 𝑅PGAin
. (3)

𝐴PGA stands for the gain of PGA.

3.3. Analog-to-Digital Converter (ADC). Analog-to-digital
converter circuit used ADS1259 to digitize the signals at
PGA281 output. ADS1259 outputs 24 bits of conversion data
in binary format. Combined with a signal amplifier, a high-
resolution, high-accuracy measurement system is formed
that is capable of digitizing a wide range of signals.

Depending on different input values, the ADS1259 has
corresponding output code 𝑁ADC, a 24-bit hexadecimal
number. If the voltage of input signal 𝑈ADCin is larger than
positive full-scale input 𝑉REF, the output code of ADC is set
to 7FFFFFh. 𝑈ADCin is provided by the PGA and equal to the
output voltage of PGA; namely,𝑈PGAout = 𝑈ADCin. If the input
voltage of ADC is less than −𝑉REF(223/(223 − 1)), the output
code of ADC is set to 800000H. And if the input voltage
is in the interval of (−𝑉REF(223/(223 − 1)), 𝑉REF), the input
signal can be digitized to a dynamic output code, which can
be expressed as

𝑁ADC = 𝑈ADCin (223 − 1𝑉REF
) . (4)

According to Nyquist Theorem, the input analog signal
can be recovered without distortion; thus voltage of input
analog signal 𝑈ADCin can be measured based on the value of𝑁ADC.

3.4. Microcontroller Unit (MCU). In order to configure the
value of reference voltage and input gain of PGA and output
data rate of ADC and calculate the data obtained from
ADC outputs, a low-power and high-speed MCU, namely,
STM32L151, is used in the system control module of the
proposed system. STM32L151 device has high-performance
ARM core operating at a 32MHz frequency, as well as high-
speed embedded memories having up to 128Kbytes of flash
memory and up to 16 Kbytes of RAM. Moreover, the
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STM32L151 device contains standard and advanced com-
munication interfaces, such as USARTs and USBs, which
can transmit measured data to computer for record and
further analysis. Due to the good performance and low-cost
of STM32L151 device, the proposed system is well represented
in the configuration of a variety of parameters of the system
and data processing.

3.5. Power-Supply Module. A power-supply module has been
elaborated in order to satisfy the power requirement of PGA,
ADC, and MCU.

The PGA281 requires three supply voltages: the high-
voltage analog supply, the low-voltage output amplifier sup-
plies, and the digital I/O supply.The high-voltage analog sup-
plies, which include negative high-voltage supply (VSN) and
positive high-voltage supply (VSP), power the high-voltage
input stage section and are set to ±12 V in the proposed
system.The voltage of USB is 5V, which cannot provide±12 V
power supply, so that a DC-DC boosting circuit based on
MC34063 which is a DC/DC converter is proposed. The
power-supply module can provide stable power which
improve the stability of the system.

3.6. Parameter Measured by the Proposed System. The pro-
posed system is developed as a low-cost, high-resolution,
high-accuracy, real-time measurement system for the power
LoWPANdevices. It canmeasure and estimate instantaneous
current, average current, average power, and instantaneous
power.

The instantaneous current of the DUT is measured in a
sampling interval, which is given by

𝐼DUTin (𝑛)
= 𝑁ADC (𝑛) (𝑉REF/ (223 − 1)) (𝑅 + 𝑅PGAin)𝐴PGA (𝑅 × 𝑅PGAin) . (5)

𝐼DUTin(𝑛) stands for the current value in 𝑛th sampling
interval.

The average current value 𝐼average is computed once per
cycle 𝑁𝑠, which can be calculated by

𝐼average = 1𝑁𝑠
𝑁
𝑠∑
𝑛=1

(𝐼DUTin (𝑛)) = 1𝑁𝑠
⋅ 𝑁𝑠∑
𝑛=1

(𝑁ADC (𝑛) (𝑉REF/ (223 − 1)) (𝑅 + 𝑅PGAin)𝐴PGA (𝑅 × 𝑅PGAin) ) .
(6)

The input impedance of PGA is very large and the
impedance of𝑅 is very small, which is usually set to 10Ω; that
is, 𝑅PGAin ≫ 𝑅. Therefore, the instantaneous current of DUT
can be simplified to the following:

𝐼DUTin (𝑛) ≈ 𝑈𝑅𝑅 = 𝑁ADC (𝑛) (𝑉REF/ (223 − 1))
𝐴PGA × 𝑅 . (7)

Table 2: Symbols description.

Symbols Meaning
𝑈𝑅 Analog voltage of signal detection senor
𝑅DUTin Input impedance of DUT
𝑅PGAin Input impedance of PGA
𝐴PGA Gain of PGA
𝑈ADCin Analog input voltage of ADC
𝑈PGAout Analog output voltage of PGA
𝑁ADC Digital output of ADC

𝐼DUTin (𝑛) Digital current value in 𝑛th sampling interval
provided by MCU

𝑉REF Reference voltage of PGA controlled by MCU

Similarly, the average current value can be expressed as
follows:

𝐼average = 1𝑁𝑠
𝑁
𝑠∑
𝑛=1

(𝑁ADC (𝑛) (𝑉REF/ (223 − 1))
𝐴PGA × 𝑅 ) . (8)

Assuming the battery 𝐸 of DUT is ideal, and the voltage
of the battery is not time-varying; that is, 𝑈𝐸 is a constant.
The average power of the DUT is calculated once per cycle𝑁𝑠, which is shown as follows:

𝑃average = 𝐼average𝑈𝐸 − (𝐼average)2 𝑅 × 𝑅PGAin𝑅 + 𝑅PGAin
. (9)

Due to the fact that 𝑅PGAin ≫ 𝑅 and 𝑅 → 0, the equation
can be expressed as

𝑃average = 𝐼average𝑈𝐸 = 𝑈𝐸 × 1𝑁𝑠
𝑁
𝑠∑
𝑛=1

(𝐼DUTin (𝑛)) . (10)

The instantaneous power is the power consumption of
DUT in each sampling slot, which is given by

𝑃 (𝑛) = 𝑈𝐸 × 𝐼DUTin (𝑛) . (11)

The measured instantaneous power can be set to com-
puter throughUniversal Asynchronous Receiver/Transmitter
(UART) for further research.

In all equations,𝑉REF is the difference between the voltage
values of positive reference absolute input and negative
reference absolute input of ADC.𝑁𝑠, 𝑅, and𝐴PGA are known
parameters.𝑁ADC(𝑛) is a valuemeasured byADC in a sample
interval, and according to 𝑁ADC(𝑛), we can measure and cal-
culate the value of the instantaneous current, average current,
average power, and instantaneous power of DUT. The
description of the symbols in the equations above is summa-
rized in Table 2.

As shown in Figure 4, DUT is a kind of LoWPAN device,
which periodically builds a wireless connection with another
LoWPAN device. The proposed system is connected to the
DUT via an interface reserved for power measurement. The
measured datawill be calculated and transmitted to computer
for record and further analysis via USB cable.The battery can
supply the power of DUT.
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Figure 4: Hardware setup.

4. Status Detection and Classification

4.1. Measurement Accuracy. We compare our measured
waveforms with Keysight 34465A millimeter. Keysight
34465A millimeter has high sensitivity and accuracy, so that
it can be used as the ground-truth of themeasuredwaveforms
and the qualification standard of the accuracy of our mea-
sured data.We can see that these valuesmeasured by our plat-
form are close to 34465A millimeter. The result is shown in
Figure 5(a).

We quantitatively evaluate the errors in Figure 5(b),
which shows a cumulative distribution function (CDF) of the
difference between PTone’s measurement and the Keysight
34465A millimeter’s measurement.

TheCDF shows that the 90th percentile error is 4mw.Our
results further show that PTone’s mean power measurement
error is 0.37mw. Since the average power in our experiments
is 100mw, on average, PTone estimates power to within 0.37%
of its correct value.

We confirm the performance of our system through this
experiment. Besides we can ensure the evident effectiveness
of the proposed system to make it easier to measure instan-
taneous current, average current, instantaneous power, and
average power of DUT, as well as checking for system status
during the period of development of LoWPAN devices.

4.2. Power Consumption Waveforms Information. LoWPAN
devices contain a variety of components, such low-power
MCU, RF circuits, power management module, and sensor
module. In a real-world application, the sensor module often
adopts COTS sensors, which have mature and stable power
consumption model and have little interfere to the detection
of DUT system status. MCU and RF circuits consume most
of the power offered by power supply [22, 23]. Each LoWPAN
DUT uses the power in maintenance of system configuration
and sends ACK or data packet during the work state. After
this period, the DUT system reduces the workload of MCU
and shuts down RF circuits and then enters the sleep state
which has almost no electric energy loss.

The PTone continually monitors the power waveforms of
the DUT in real time, and the information of the waveforms
can be represented by the following equation:

𝑃 (𝑖) = 𝑃𝑀 (𝑖) + 𝑃𝑅 (𝑖) + 𝑁 (𝑖) 𝑖 ∈ [0, 𝑇] . (12)
In the equation above, 𝑃𝑀(𝑖) represents power consump-

tion of MCU module and 𝑖 stands for the 𝑖th sample point.𝑃𝑅(𝑖) represents power consumption of RF module. 𝑃𝑀(𝑖)
and 𝑃𝑅(𝑖) make up a large proportion of the total power 𝑃(𝑖)
and the noise 𝑁(𝑖) comes from random measurement noise
and the power consumption of sensors and components in
peripheral circuit and so on.

This section is organized as follows. First, we remove
the noise in the measured waveform. Second, we detect the
work state in the waveform which includes the start time and
end time of active time. Third, we select and extract features
based on the character of LoWPANdevices’ power consump-
tion. Finally, we use the extracted features to train a multiple
classifier, which can detect and classify the status of LoWPAN
devices accurately.

4.3. Noise Removal. Even though the proportion of system
noise in the total measured power waveform is not large, the
noise cannot be ignored due to amplitude excitations of noise
with large dynamic range, as shown in Figure 6(a).The goal of
this preprocessing step is to dampen the noise signal and
improve the signal-to-interference-and-noise ratio (SINR) of
the 𝑃𝑀(𝑖) and 𝑃𝑅(𝑖) signal.

The frequency of system noise is not regular and occurs
in a random fashion. In order to minimize the influence of
system noise to the following feature extraction and classifi-
cation, we use an appropriate filter to remove noise in such a
situation.

If we use a Butterworth low pass filter, a type of signal
processing filter widely used to remove high frequency noise,
the large amplitude noise would make the power waveform
distortion, because the noise signal in the waveforms is
introduced by various factors, such as test environment,
circuit noise of the DUT, and measuring platform, and is not
all of high frequency. To address this challenge, PTone applies
a Hampel filter to the measured power waveforms, to detect
and remove outliers. Hampel filter computes the median
value of the sample and its surrounding samples by using a
slipping window. It also estimates the standard deviation of
each sample about its windowmedian using themedian abso-
lute deviation. If a sample differs from the median by more
than three standard deviations, it is replaced with the media,
which can eliminate the outliers caused by noise [24, 25].

The result shows that Hampel filter can remove the
outliers effectively under the premise of retaining the valid
data.

4.4. Work State Detection. In order to detect work state and
distinguish the active time and quiet time in work state,
we need to detect the start points and end points of the
active time work state of DUT system. We process the
measured data in a causal system, which is different from
traditional mean absolute deviation (MAD) algorithm.MAD
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Figure 5: Power waveform measured by Keysight 34465A and PTone and CDF of error in power measurements.
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Figure 6: Power waveform before and after filtering.

algorithm is a kind of edge detection algorithm widely used
in the digital image processing and not suitable for the time
signals processing in this paper. To address this challenge, we
propose a work state detection algorithm (WSDA).

First, the algorithm calculates weighted mean absolute
value in the latest𝑊 sample points.The weighted coefficients
of each point in the window width of 𝑊 are set according to
the distance to the current point.Theweightedmean absolute
value (WMAV) is calculated using the following equation:

𝑚(𝑖) = 𝑊−1∑
𝑗=0

𝜔 (𝑗) 𝑃󸀠 (𝑖 − 𝑗) , 𝑖 ∈ [0, 𝑇󸀠] . (13)

In the equation, 𝑗 represents the distance to the current
point in the slipping window, 𝑃󸀠(𝑖 − 𝑗) represents the filtered

data of 𝑃 waveforms processed by a Hampel filter, 𝜔(𝑗)
represents the weighted coefficients of each point in the win-
dow and decreases with the increase of distance 𝑗, and 𝑚(𝑖)
represents WMAV of the current point, which can be used to
detect the start and end points of work state.

Second, after calculating the WMAV of each point in the
measured power consumption waveforms, WSDA compares
the WMAVs with a threshold 𝜃th. Let Δ𝑚(𝑖) = 𝑚(𝑖) − 𝑚(𝑖 −1) and 𝛿(𝑖) = |Δ𝑚(𝑖)| − 𝜃th; if Δ𝑚(𝑖) > 0 and 𝛿(𝑖) > 0, it
indicates that theWMAVhas a significant increase in interval[𝑖 − 𝑊, 𝑖] and current point can be regarded as a candidate of
state point.

IfΔ𝑚(𝑖) < 0 and 𝛿(𝑖) > 0, it indicates an obvious decrease
in the interval, which can be regarded as a candidate of end
point. If 𝛿(𝑖) ≤ 0, it shows that the variation of WMAVs
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Input: Sequence 𝑃󸀠 of 𝑇󸀠 points
Output: Start points 𝑠𝑤 of each work state
(1) Assert 𝑠𝑓 == 0
(2) 𝑠𝑤𝑠 ← FINDCANDIDATES (𝑃󸀠)
(3) For 𝑘 ← 0 to 𝑁𝑤𝑠 do
(4) If (1/(𝑠𝑤𝑠(𝑁𝑤𝑠) − 𝑠𝑤𝑠(𝑘))) ∑𝑠𝑤𝑠(𝑁𝑤𝑠)𝑗=𝑠

𝑤𝑠
(𝑘)

Δ𝑚(𝑗) > 𝜃th do
(5) 𝑠𝑓 ← 1
(6) set kth point as the start point 𝑠𝑤.
(7) return 𝑠𝑤
(8) procedure FINDCANDIDATES (𝑃󸀠)
(9) For 𝑖 ← 0 to 𝑇󸀠 do
(10) 𝑚(𝑖) ← ∑𝑊−1𝑗=0 𝜔(𝑗)𝑃󸀠(𝑖 − 𝑗)
(11) Δ𝑚(𝑖) ← 𝑚(𝑖) − 𝑚(𝑖 − 1)
(12) 𝛿(𝑖) ← |Δ𝑚(𝑖)| − 𝜃th
(13) If 𝛿(𝑖) > 0 and Δ𝑚(𝑖) > 0 do
(14) add ith point into start point candidate set {𝑠𝑤𝑠(1), 𝑠𝑤𝑠(2), 𝑠𝑤𝑠(3), . . . , 𝑠𝑤𝑠(𝑁𝑤𝑠)} sequentially
(15) return {𝑠𝑤𝑠(1), 𝑠𝑤𝑠(2), 𝑠𝑤𝑠(3), . . . , 𝑠𝑤𝑠(𝑁𝑤𝑠)}

Algorithm 1: Work state detection algorithm (WSDA).

does not exceed the threshold 𝜃th and power consumption
waveforms do not change obviously in the interval.

Third, in a real-world measurement, there may be more
than one state point candidate on the rising edge of power
waveforms, so we need to choose an appropriate candidate as
the start point in each work state. Due to the requirement
of the complete work state waveforms for feature extraction,
it is inappropriate to use the mid-value of those candi-
dates which is commonly used in statistics, and we chose
the state points according to the following ways. Let{𝑠𝑤𝑠(1), 𝑠𝑤𝑠(2), 𝑠𝑤𝑠(3), . . . , 𝑠𝑤𝑠(𝑁𝑤𝑠)} represent the set of start
point candidates obtained from stat point detection algo-
rithm. 𝑠𝑤𝑠(1) represents the first start point candidate in
chronological order. 𝑁𝑤𝑠 represents number of candidates in
the set.

WSDA compares the Δ𝑚(𝑖) values of each point in{𝑠𝑤𝑠(1), 𝑠𝑤𝑠(2), 𝑠𝑤𝑠(3), . . . , 𝑠𝑤𝑠(𝑁𝑤𝑠)} on the same rising edge.
If themean value ofΔ𝑚(𝑖) frompoint 𝑠𝑤𝑠(𝑘) to point 𝑠𝑤𝑠(𝑁𝑤𝑠)
is larger than threshold 𝜃th, we define that point 𝑠𝑤𝑠(𝑘)
has stable growth subsequent waveforms as shown in the
following equation:

1𝑠𝑤𝑠 (𝑁𝑤𝑠) − 𝑠𝑤𝑠 (𝑘)
𝑠
𝑤𝑠
(𝑁
𝑤𝑠
)∑

𝑗=𝑠
𝑤𝑠
(𝑘)

Δ𝑚 (𝑗) > 𝜃th,
𝑘 ∈ [1,𝑁𝑤𝑠] .

(14)

Then, we choose the minimum value in 𝑠𝑤𝑠(1), 𝑠𝑤𝑠(2),𝑠𝑤𝑠(3), . . . , 𝑠𝑤𝑠(𝑁𝑤𝑠) which satisfies the above equation as
the start point of the active period of work state and set
the work state flag 𝑠𝑓 = 1 to capture the increasing and
decreasing trends. The end points 𝑒𝑤 of each work state are
obtained in a similar way.The pseudocode of our algorithm is
presented in Algorithm 1.

Lastly, our algorithm detects the start point and end point
candidates in thewholewaveformand chose appropriate ones
as start or end points to confirm the presence of a complete
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Figure 7: Work state detection.

active time of work state within that interval, as shown in
Figure 7.

The figure shows that even though the filtered waveform
has some outliers, our algorithm can detect the start point
accurately in different work state.

4.5. Feature Selection and Extraction. In order to differentiate
between statuses of the DUT system based on the real power
consumption, we need to extract some unique features that
can classify different system status. And according to the start
and end points of active time in work state, we can extract the
waveform series in the work state for further analysis instead
of using the whole waveform, which allows us to extract
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Figure 8: Active time and quiet time in work state.

the features of power waveform more accurately. Feature
selection techniques are important to select features for good
classification results. Previousworks on feature selectionwere
based on filter or wrapper methods [26–28]. However, the
methods need to process a large number of data to find out
appropriate features, which is hard to achieve in real-time and
low-cost platform.

Instead, PTone chooses the features based on unique
features of each active period in work state of LoWPAN
devices.

As shown in Figure 8, S1, S2, S3, and S4 represent the
active time of receiving beacon for source node, sending
ACK, sending data, and receiving ACK from source node,
respectively.Work state includes S1, S2, S3, and S4 section and
the quiet time between them.𝑇𝑤 represents the duration time of work state. 𝑇𝑠 repre-
sents the period of DUT system which includes one work
state and one sleep state. Andwe observed that𝑇𝑤 is fluctuant
and increases with the increase of transmission data. We also
observed that𝑇𝑠 is stable even though it is controlled byMCU
of the DUT system and in real-world application, 𝑇𝑠 is far
greater than𝑇𝑤, and the change of𝑇𝑤 has no great effect on𝑇𝑠.
In the same experimental condition, if outliers are presented
within 𝑇𝑠 in each DUT period, that is, the measured value of
power consumption is either too large or too small, we usually
may consider that abnormal configuration of DUT’s MCU
exists in the wake-up time control module or system clock of
theMCU.Therefore,𝑇𝑠 can be selected as a feature to evaluate
the MCU performance of the DUT.

We also observed that the power waveforms in S2 and S3
have similar amplitude in each work state. If the DUTs do not
perform well in radio frequency module, the amplitude of S2
and S3 may be different and not stable. So the difference of
maximumvalue of S2 and S3 can be used to evaluate the status
of radio frequency (module of DUT devices).

After many experiments and analysis, we carefully
selected some distinctive features of LoWPAN devices to
classify the system status of DUT as follows:

Waveform Features

Mean amplitude of S2 and S3
Root mean square deviation of S2 and S3

Mean amplitude of S1 and S4
Quiet time in work state
System period 𝑇𝑠

PTone can detect and classify the abnormal system status
of LoWPAN devices based on the features proposed above.
Note that we only detect the abnormity which affects the
performance of low-power wireless communication, and the
abnormity is inconvenient and hard to be detected in tradi-
tional ways.The labeled features are collected in the following
ways. We connect a LoWPAN DUT into our hardware
platform. Then, we start a source device which could
search the LoWPAN DUT and build wireless communica-
tion. Then, the LoWPAN device enters work state and sleep
state periodically. Meanwhile, the real-time power waveform
sequences will be measured by PTone. The work state, the
start time, and end time of S1, S2, S3, and S4 and sleep state in
the sequences can be detected by the work state detection
algorithm (WSDA) proposed above. Then, PTone extracts
the labeled features from the measured power waveform
sequences based on the start and end point of each active
time. Then, the features could be trained for the further
analysis and classification of system status.

4.6. Classification and Evaluation. In this section, we investi-
gatewhether PTone can accurately classifyDUT system status
based on thewaveform features extracted above. Based onour
experience in the R&D process of LoWPAN devices, we
divided system abnormal status into several groups: two
kinds of RF module abnormal cases and two kinds of MCU
control system abnormal cases.

RF module abnormal cases include the case of abnormal
power control and the case of insufficient RF power in certain
active period of work state. MCU control system abnormal
cases include the case of irregular interval of each active time
in work state and the case of inappropriate DUT’s system
period, which is caused by crystal deviation, synchronization
strategy bugs, and so on.

The existence of abnormal power control, which is rep-
resented by RF-1, undermines the network connectivity and
even may lead to the failure of data transmission. A typical
waveformof this status is shown in Figure 9(a).The amplitude
of S2 is not smooth, which should be stable during the active



10 Mobile Information Systems

0 100 300200 400 500 700600

Time

0

50

100

150

200

250

Po
w

er
 (m

w
)

Power
Start point
End point

S4

S3

S2

S1

(a) Typical power waveform of RF-1 status

0 100 300200 400 500 700600

Time (ms)

0

50

100

150

200

250

Po
w

er
 (m

w
)

Power
Start point
End point

S1

S2 S3

S4

(b) Typical power waveform of RF-2 status

Figure 9: Typical power waveform of abnormal power control status (RF-1) and insufficient RF power status (RF-2).
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Figure 10: Typical power waveform of unstable interval of active time status (M-1) and abnormal system period status (M-2).

period to have better performance according to the design
of the devices. The power waveform indicates that the power
control in the S2 period during work state is abnormal.

The insufficient RF power, which is represented by RF-2,
may reduce the coverage of wireless network and influence
the use of LoWPANdevices. A typical waveform of this status
is shown in Figure 9(b). Even though the amplitudes of S2 and
S3 are smooth in each active time, the amplitudes have
obvious difference, which should be similar during sending
packet and sending ACK period according to our design.

The insufficient RF power in S3 causes this kind of abnormal
power waveform.

The unstable interval of active time may be caused by
inaccurate configuration in MCU, incomprehensive estima-
tion of time-delay in DUT system, and so on, which is rep-
resented by M-1. In LoWPAN, every device takes a time slot
to receive beacon and send ACK or data package. Unstable
interval of the active time can result in communication con-
flicts with other devices. A typical waveform of this status is
shown in Figure 10(a).
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The figure shows that the interval between S2 and S3 is
much larger than that of well-performed devices. S3 is
repeated two times in the same work state, which means that
the excessive interval between S2 and S3 leads to unnecessary
retransmission of packet data (S3). This phenomenon is
difficult to be directly observed in the traditional testmethod.

Time synchronization is a key issue for any distributed
system and is widely used in distributed wireless sensor
networks, especially LoWPAN. So, if the system period is not
stable and accurate, not only would power consumption be
improved, but also the device would have a bad effect on the
communication of other devices in the area with high node
density.The case of abnormal system period is represented by
M-2. A typical waveform of this status is shown in Fig-
ure 10(b). The figure shows that the system in M-2 does not
have a suitable sleep state between each work state, and the
device receives beacon and sends data all the time, which is
not in accordance with the design of the devices.

The extracted features are used to train Support Vector
Machine (SVM) and achieve the classification of multiple
system status.We usemaximumposterior probability (MAP)
obtained by the SVM to estimate the system status. MAP can
be used to obtain a point estimate of an unobserved
quantity based on measured data. It is closely related to
Fisher’s method of maximum likelihood (ML) estimation but
employs an augmented optimization objective which incor-
porates a prior distribution (that quantifies the additional
information available through prior knowledge of a related
event) over the quantity one wants to estimate [29–32].

We visualize the output of the classification as follows: we
choose two of the features and calculate the maximum poste-
rior probability (MAP) of each status in a 2D plane. The axes
are the two features or combinations of the two features.

In Figure 11(a), the MAP of M-1 and M-2 status are
estimated on the basis of two features, that is, the quiet time
between S2 and S3 and system period. Due to the limit of
using only two features, the SVM only can classify the system
status into 3 kinds of cases, M-1, M-2, and uncertain status.
The uncertain status includes RF-1, RF-2, normal status, and
other unknown statuses. Every point in Figure 10 has a poste-
rior probability of each system status. And the color of point
is the MAP value of a system with those two features. If the
MAP of system in certain status is larger than in others, we
can classify the system in that status.

For example, if a DUT’s quiet time between S2 and S3 is
60ms, and system period is 700ms, we can classify that the
system status is in M-2 status, because the MAP of that point
in M-2 status is more than 90%.

We also visualize the output of the classification by calcu-
lating theMAP based on different features to estimate system
status. We classify RF-1 and RF-2 (Figure 11(b)) and M-2
and RF-1 (Figure 11(c)) by using mean value of S2, quiet time
between S2 and S3, and system period.

Note thatwe can accurately classify two system statuses by
using two only two features.

In the actual course of application, we use more than two
features to train the multiple classifier, which can detect
different system status at the same time.

Our method in the real-world application is composed
of offline step and online step. In the offline step, we
collect waveform data of DUT in known statuses, extract
the features, and train classifier. In the online step, we
connect the DUT (in unknown status) into our platform.
Then, the real-time power waveform of the DUT can be
transmitted into a server, which is a Lenovo laptop with
a Core i5 desktop CPU and 4GB RAM. Then, the server
calculates the MAP of each status based on the well-trained
classifier and classifies the real-time system status based on
the following rules. 𝑃𝑁, 𝑃M-1, 𝑃M-2, 𝑃RF-1, and 𝑃RF-2 represent
the MAP of normal, M-1, M-2, RF-1, and RF-2 status,
respectively. If the difference between the two largest values
of 𝑃𝑁, 𝑃M-1, 𝑃M-2, 𝑃RF-1, and 𝑃RF-2 is more than a certain
threshold 𝜃MAP, the system is assigned to the status with
largest MAP. If there are no such values, PTone classifies the
system into uncertain status and waits for further data to
calculate theMAPof each status.The threshold 𝜃MAP depends
on the number of detected statuses and the resolution of
distinguishing different statuses. The larger 𝜃MAP reduces
the probability of wrong classification, but, at the same
time, it also increases the number of data collected from
the DUT and the time consumption of analyzing data.
According to our measurements, 𝜃MAP is set to 20% in our
experiments.

To evaluate PTone’s system status classification accuracy,
we collect 200 power waveform sequences (with the same
length) from different statuses (40 sequences in each status).
We train a type of system status classifier based on some fea-
tures proposed and extracted above. The average accuracy of
classification and some typical multiple classification of
system status are shown in Figure 12.

In Figure 12(a), the figure shows that the average accuracy
of multiple classification is 89.5%.The classification of abnor-
mal system period status (M-2) has higher accuracy (95%)
because the time of sleep state between each work state, as the
main feature of M-2, is longer than that of work state and can
be easily distinguished. Meanwhile, the classification accu-
racy of RF-2 is relatively low (82.5%), because the amplitude
difference between S2 and S3 in work states, which is one of
the main features of RF-2, is usually very small and easily
affected by noise. Even though there is some noise in themea-
sured sequences and limited performance of PTone’s server,
our platform can still achieve an accuracy of 89.5%.

In Figure 12(b), the figure shows that the multiple clas-
sifier can calculate the MAP of each status. In the 1st mea-
surement, the MAP of system in normal status is 85%, which
is higher than that of M-1 (2%), M-2 (3%), RF-1 (3%), and
RF-2 status (7%). According to the classification rule pro-
posed above, 𝑃𝑁 − 𝑃RF-2 > 𝜃MAP, we can classify the DUT
system in the 1st measurement into normal status. Similarly,
the DUT system in the 2nd, 3rd, 4th, and 5th measurement
can be classified into M-1, M-2, RF-1, and RF-2 status,
respectively.

The results of the experiment show that PTone can detect
and classify typical system at high classification rate by using
different features extracted from power waveforms.
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Figure 11: Classification of two statuses based on two features.

5. Conclusions

In this paper, a low-cost, instantaneous current/power wave-
form detection platform with desirable resolution and accu-
racy is proposed. Some power definitions, for example,
average current, instantaneous current, average power, and
instantaneous power, can be measured and calculated pre-
cisely. A novel and convenient testing method based on this
system has been demonstrated for LoWPAN devices. The
platform can be designed as a hermetically sealed module
with economical components with small volume, which can
be used in a variety of scenes whenever a wide range of small
DC current is to be measured.
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