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Abstract—Motion tracking technologies have been widely used
in mobile interaction applications, such as Virtual Reality (VR),
healthy monitoring, and virtual touch control. Compared with
dedicated hardware devices, mobile phones use reliable speakers
and microphones, and can serve as ubiquitous devices for cheap
acoustic-based motion tracking solutions. However, for complex
indoor environments, it is very difficult for acoustic-based meth-
ods to achieve accurate motion tracking due to multipath fading
and limited sampling rate at mobile devices. In this paper, a
new parameter named Multipath Effect Ratio (MER) is defined
to indicate the multipath fading effect on received signals at
different frequencies. Based on MER, a novel multipath effect
mitigating technique is developed to calculate the phase change
of acoustic signals and track the corresponding moving distance
by using multiple speakers. A Phase-based Acoustic Motion
Tracking (PAMT) method is then proposed and implemented on
standard Android smartphones. Experiment results show, with-
out any specialized hardware, PAMT can achieve an impressive
millimeter-level accuracy for localization and motion tracking
applications in multipath fading environments. Specifically, the
measurement errors are less than 2mm and 4mm in one-
dimensional and two-dimensional scenarios, respectively.

Index Terms—Motion Tracking; Multipath Fading; Mobile
Interaction;

I. INTRODUCTION

Motion tracking technologies have been widely used in

mobile interaction applications, such as Virtual Reality (VR).

Based on electromagnetic signals, such as Wi-Fi signal [1],

[2], visible light [3], [4], and millimeter wave [5], [6], different

motion tracking techniques have been proposed to use dedi-

cated hardware devices for achieving sub-meter-level accuracy
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16ZR1435200), and the Science and Technology Innovation Program of
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in different scenarios. However, these methods are not good

enough for tracking a user’s gesture or posture in real time.

Compared with electromagnetic signals, acoustic signals

have much lower frequencies and slower propagation speeds.

Therefore, they are very suitable to be used for high-accurate

and low-latency motion tracking applications. Further, unlike

dedicated hardware devices, mobile phones use reliable speak-

ers and microphones, and can serve as ubiquitous devices for

cheap acoustic-based motion tracking solutions.

For complex indoor environments, it is particularly chal-

lenging to achieve accurate motion tracking using acoustic

signals. Specifically, the low sampling rate on commercial mo-

bile devices (e.g., 48KHz for typical mobile phones) limits the

resolution of traditional methods based on Doppler effect or

Time-of-Arrival/Time-Difference-of-Arrival (ToA/TDoA) [15]

[7]. Therefore, it is very difficult for those traditional methods

to track small or slow movements of mobile devices. In

addition, due to severe fading effects in indoor environments,

normal mobile devices using traditional methods can hardly

distinguish Line-of-Sight (LoS) signals from Non-LoS (NLoS)

signals with slightly different delays from multiple propagation

paths.

There have been some works on improving the accuracy of

acoustic motion tracking [7]–[9]. However, they either require

specified hardware or have limited performance in multipath

fading environments. For example, CAT [7] proposes an

enhanced FMCW method to improve the measuring accuracy,

but it also cannot track small and slow movement as traditional

FMCW methods. In SoundTrak [8], a dedicated smart watch

tracks the motion of a micro-speaker using the inaudible

acoustic signals, but it requires a specified microphone array

placed on the smart watch to track the micro-speaker’s motion.

Vernier [9] proposes an active motion tracking approach by



calculating the phase change of received signals and then

estimating moving distance. However, multipath fading effects

are not taken into consideration in Vernier because the target

device is moved in a small area without the interference from

multiple paths.
In this paper, a Phase-based Acoustic Motion Tracking

(PAMT) method is developed to mitigate multipath fading

effects and provides fine-grained motion tracking for a typical

mobile device, i.e., smart phone. The received signal is a

superposition of signals from different paths and it’s difficult to

distinguish LoS signals from NLoS signals on normal mobile

devices. Thus, it’s even harder to calculate the actual phase of

LoS signals, which are vulnerable to multipath fading in indoor

environments. In order to achieve accurate and robust motion

tracking, we should accurately measure the transmission time

change of LoS signals in multipath fading environments. Some

works, such as [31], find the first peak of the cross-correlation

between emitting signals and received signals to calculate

arrive time change of LoS signals, and then estimate distance

change. However, due to the limited sampling rate on mobile

phones, it’s challenging to achieve mm-level accuracy using

the cross-correlation based methods. We leverage the fact that

the multiple fading effects don’t always affect the phase based

measurements of different frequencies at the same time since

signals at different frequencies have different wavelengths and

phases during measurements. Specifically, we use multiple

sources to transmit inaudible acoustic signals at different

frequencies. Then the target mobile device receives these

transmissions, and derives the distance change to each source

based on the phases of received signals. In order to obtain the

phase change that best matches moving distance, we select the

frequency suffer from the least multipath fading interference

to estimate actual moving distance. We now ask the following

question: How to determine the impact of multipath fading
on the signals at different frequencies? In order to select the

signal suffering from the least interference, a new parameter

named Multipath Effect Ratio (MER) is defined to indicate

the multipath fading effects on received acoustic signals at

different frequencies in each frame. Based on MER, PAMT

can effectively mitigate multipath effects, obtain the accurate

phase change in multipath fading environments, and then

detect small movements for real-time motion tracking.
The key contributions of this paper are summarized as

follows:

• To address the technical challenges of motion tracking in

complex indoor environments, a new parameter named

Multipath Effect Ratio (MER) is defined to capture the

multipath fading effects on received acoustic signals at

different frequencies.

• Based on MER, a novel Phase-based Acoustic Motion

Tracking (PAMT) method is developed to measure subtle

phase changes at different received signals in multipath

fading environments, and derive the corresponding small

movements for achieving accurate motion tracking.

• A prototype system is implemented on a standard An-

droid smart phone. Experiment results show our PAMT

method can achieve an impressive millimeter-level ac-

curacy for localization and motion tracking applications

in multipath fading environments. Specifically, the mea-

surement errors are less than 2mm and 4mm in one-

dimensional (1-D) and two-dimensional (2-D) scenarios,

respectively.

In summary, our work achieves: (1) feasible motion tracking

with mm-level accuracy on mobile devices, (2) strong robust-

ness in dense multipath indoor environments.

The rest of this paper is organized as follows. Related work

is reviewed in Section II. Section III provides the system

design for phase calculation, multipath effect mitigation, and

1-D ranging. The details of the proposed PAMT method are

given in Section IV. Implementation details and experimental

results are presented and discussed in Sections V and VI,

respectively. Some limitations and future work are analyzed

in Section VII. Finally, Section VIII concludes this paper.

II. RELATED WORK

There are many existing work presenting different tech-

niques of motion tracking, which are clearly different from

our work.

Acoustic based motion tracking: Existing acoustic based

measurements mainly use traditional technologies based on

ToA/TDoA [10]–[12], or the Doppler effect based [13]–[15].

Those technologies have limited resolution due to the low

sampling rate at mobile devices, and only provide coarse-

grained measurements (e.g., dozens of centimeters). Recently,

there has been some works on motion tracking based on the

phase change of acoustic signals [7]–[9], [17], [18]. In [7]–

[9], acoustic source and receiver are different devices, and the

phase offsets between receiver and source due to asynchronous

system clocks are approximately compensated as a fixed value

at each frequency. However, the rough approximations of the

phase offsets limit accuracy and cause accumulating measuring

error over time. Further, unlike with FMCW methods which

can mitigate multipath using their high-band signals, such

as [7], multipath effects aren’t taken into consideration in

typical active ranging approaches [8], [9], because the target

devices in their works are moved in a small area without the

interference from strong multiple paths, such as an area of

about 10cm×10cm in [8]. For larger areas, the multiple effects

can’t be neglected and hinder the performance of motion

tracking. In LLAP [17] and Strata [18], acoustic source and

receiver are the same device, and the phase offset caused

by system clock between them can be ignored. However,

they use the reflection of acoustic signals to track user’s

motion instead of direct path signals, thus, their methods have

limited coverage, usually less than a meter on mobile phones.

Further, it’s challenging to distinguish the reflected signals

from multiple targets.

RF based motion tracking: Radio Frequency (RF) based

schemes can be divided into two aspects: device-based and

device-free schemes. Device-based measurements mainly use

ToA/TDoA technologies to build theoretical models that ge-

ometrically quantifies the relationships between signal charis-



matics (e.g., Received Signal Strength Indicator (RSSI)) and

the user’s location [2], [5], [6]. Most RF based device-

free tracking systems use the RF signal reflected by human

bodies to estimate the localization of indoor users [19], [20].

However, the propagation speed of light is fast, which makes

it difficult to achieve accurate motion tracking. Therefore,

existing RF signals based tracking schemes cannot achieve

fine-grained accuracy using commercial devices.

Signature-based schemes: Signatures can be obtained from

a variety of sources, such Wi-Fi signals [21], acoustic signals

[22], [23], ambient noise [24], and magnetic fields [25]. The

characteristics of the signals, such RSSI, Channel State Infor-

mation (CSI), and spectrum, can be aggregated into a location

signature. The schemes rely on the recording of the signal

characteristics as signatures at a set of know location in an

off-line phase. During the on-line tracking phase, users match

characteristics with those recorded characteristics, and choose

the closest match as the estimated users location. However,

these signatures vary over time and environmental mobility,

and need to be updated when the environment changes.

Compared with signatures-based localization methods, we use

model-based techniques to avoid the extensive measurements

for priori knowledge.

III. SYSTEM DESIGN

In this section, the limitations for existing approaches are

firstly presented. Then, the overview of our approach is

provided. Finally, the system design is described, including

phase calibration, multipath effect mitigation, and phase based

ranging.

A. Limitation of Doppler based approaches

Existing sound based ranging systems mainly use Doppler

effect to measure the relive distance and direction [13], [14],

[26], [27]. The Doppler effect is a natural phenomenon where

the frequency of the sound waves received by a mobile

device is changed by a relative velocity between the device

and the source. The moving direction and moving speed

is obtained from the shift usually measured by Short Time

Fourier Transform (STFT). However, the resolution of moving

speed vres is limited by the window size NSTFT of STFT

[14]. We have

vres =
Fs

NSTFTFc
c. (1)

Where c is velocity of sound in air. Fs is the sampling rate.

The maximum Fs is 48 KHz for typical smartphones. Fc is

the original frequency of the signal. When Fc is 18 KHz

and NSTFT is 4096, the resolution of moving speed is about

22 cm/s. The resolution can be further improved by increase

NSTFT , but system’s dynamic performance would be reduced.

Thus, Doppler based methods couldn’t detect slow movement

which is vital in mobile interaction. Further, Doppler based

methods assume that the device moves uniformly in each

STFT’s moving window, which is noise-prone in practical

system.

B. Limitation of FMCW based approaches
Some works use Frequency Modulated Continuous Wave

(FMCW) signals with high bandwidth to estimate the distance

between receiver and source [7]. In their work, FFT is usually

used to analyze the information in frequency domain. How-

ever, the resolution of the frequency analysis is related to the

bandwidth of FMCW. The resolution dres is [9]

dres =
c

B
. (2)

Where c is sound speed, and B is the bandwidth of FMCW. For

a bandwidth of 7 KHz, which is the bandwidth of inaudible

signals in most smartphones, the resolution of acoustic ranging

using FMCW is about 4.9 centimeter when c is 340 m/s. The

resolution is insufficient to track small movement in mobile

interaction. In our work, we calculate the distance change

in time domain, instead of using frequency analysis, whose

ranging resolution is not restricted by the bandwidth of signals.

C. PAMT Overview
Because of the above limitations of existing approaches,

we propose a phase-based ranging approach for acoustic

signals using LoS signals, which has more robust and accuracy

performance. In order to make the sound inaudible, a static

audio source, like a commercial speaker, continually transmits

sinusoidal signals at single frequency in the range of 17-23

KHz. The sound in the range can be generated and received by

many commercial devices without introducing audible noises.
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Fig. 1: Active phase based distance measurement.

The signals received by smartphone’s microphone are com-

posed of LoS signals and the NLoS signals reflected by

static objects, such as wall and table. In indoor environments

without dense multipath fading, when the receiver moves

close/away, the length of the LoS paths would change as

the moving distance and the reflection paths change slowly

compared with LoS paths. When the receiver, like a smart-

phone, moves close/away, the phase of acquired signal would

increase/decrease due to the length change of LoS path, as

shown in Figure 1. As the phase of the signal increases by

2π, the path length would decrease by one wavelength of the

sound wave. We can use phase changes Δθ to determine the

movement direction and calculate the real-time relative moving

distance Δd of the receiver. However, the phase change is very

vulnerable to the interference of multipath effects in indoor

environments, which could lead to incorrect measurement. We

propose a novel multipath effect mitigation method to reduce

the impact of multiple paths, and improve the performance of

the phase based measurement.



D. Calculating Phase change using Park transformation

Before phase based ranging, we need to calibrate the phase

offsets between sender and receiver due to their asynchronous

system clocks. Even when the receiver is static, the received

signal frequency is slightly different from the sender because

the asynchronous system clocks lead to the linear increases on

the phases of received signals. The phase offsets will further

bring errors to distance measurement. The increases of phase

offsets are slow and difficult to be measured by frequency

analysis methods, e.g., Fast Fourier Transform (FFT). Inspired

by the phase calibration method used to calibrate the phase

offsets between the WiFi wireless cards [32], we use the

similar way to calculate the acoustic phase offsets between

the receiver and source.

Then, we need calculate the phase changes of received

signals. Some works calculate the phase change by multiplying

the signal with orthogonal signals [17] [18]. The method

brings in high frequency noise that need to be removed by low

pass filter, which increases the computation and causes addi-

tional delay. Vernier [9] proposes a lightweight phase change

calculating method which uses the number of maximum value

in a moving window to calculate the number of cycles in

the window. However, each cycle doesn’t always have an

obvious maximum value due to the superposition of signals

from different paths, so the method has limited application

in practical systems. In this subsection, we propose a phase

change calculating method using Park transformation, which

doesn’t introduce high frequency noise and has low latency.

Band pass 
filter Delay Demodulation

Microphone
arctan

Fig. 2: Calculating phase change using Park transformation.

We now give an overview of PAMT when a source

transmits the signal at a single acoustic frequency, namely

A cos (2πfct). A is the amplitude of sound and fc is the

frequency of the sound. The mobile device obtains acoustic

signal Ri(t) from its microphone, as the MIC block in Figure

2. In order to measure the phase change at each frequency

independently, we use a Band Pass Filter (BPF) with narrow

band which could pass the signals around center frequency fc,

and rejects signals at other frequencies, as shown in the figure.

We delay the filtered signal Rα by a quarter of fundamental-

wave period. The delayed signal Rβ is orthogonal to Rα,

Rα (t) = A′ cos (2πfct− τ) ,

Rβ (t) = A′ sin (2πfct− τ) .
(3)

Where A′ is the amplitude of the signal after transmission

attenuation and filtering. τ is the phase delay due to sound’s

propagation from source to receiver at time t. Rα and Rβ

can be further used to estimate the impact of multipath effects

in Section III-E. We calculate the phase change using Park

transformation [30]. After multiplying a transformation matrix

P to Rα and Rβ ,[
Rd (t)
Rq (t)

]
= P ·

[
Rα (t)
Rβ (t)

]
(4)

where P is the Park transformation matrix

P =

[
cos (2πfct) sin (2πfct)
− sin (2πfct) cos (2πfct)

]
.

We can obtain two based band signals without the carrier

frequency fc component, corresponding to Rd and Rq:

Rd (t) = A′ cos (τ) ,
Rq (t) = −A′ sin (τ) .

(5)

Then, we calculate the phase delay τ at time t using inverse

tangent transformation, and the phase change in each frame.

E. Combating Multipath using MECF

In practical system, due to the reflection of wall, floor, and

other objectors, the received signal is a superimposition of the

LoS signals and the reflected signals. However, the influence of

multipath effects in active ranging system is neglected in prior

works [7], [9]. According to our extensive experiments, the

multipath effects should be taken into consideration in active

tracking system. The multipath effects would lead to periodic

attenuation of the received signals, which brings error in the

estimation of moving distance.

Suppose that the received signals are the superimposition of

signals from N paths and each path has different delay and

attenuation. In the paths, the i-th signal Ri (t) has delay τi
and amplitude ai. Then, the receiver signal R (n) is

R (t) =
N∑
i=1

Ri (t). (6)

where Ri (t) = ai cos (2πfct− τi). Thus, it is difficult to

obtain the actual phase change from the superimposition of

signals traveled from different paths. To address this issue, we

use a speaker to transmit the signal at different frequencies.

The receiver could measure the phase change at each fre-

quency independently using the BPF. The signals at different

frequencies are transmitted through the same multiple paths

to the receiver. We leverage the fact that the multiple effects

don’t always affect the phase based measurement of different

frequencies at the same time due to their different wavelengths

and phases. Thus, in each frame, we can use the phase change

without affected by multiple paths to estimate the moving

distance.

So how to determine which signal’s phase isn’t affected

by the multipath effects in each frame? Previous work [17]

uses linear regression to remove abnormal estimation at cer-

tain frequencies and calculates the distance change using

the remaining frequencies. However, this method needs high

bandwidth to ensure good regression results, and couldn’t been

used in our system due to limited bandwidth in each speaker.

We propose a novel method to define whether a signal’s phase

is affected by the multipath effects in each frame. We call



this Multipath Effect Combating in Frame (MECF). First, we

calculate normalized signal’s trace diagram in a frame using

Rα and Rβ as coordinate axis, as shown in Figure 3c and

Figure 3d.

Lemma 1. When the device is static, the trace of signal at
each frequency is a circle.

Proof: It is simpler to treat this case in complex form

R (t) =

N∑
i=1

Ri (t) = Re

(
N∑
i=1

aie
j(2πfct−τi)

)

= Re
(
ej2πfct

(
a1e

−jτ1 + a2e
−jτ2 ...+ aNe−jτN

))
a0e

−jτ0 =
(
a1e

−jτ1 + a2e
−jτ2 ...+ aNe−jτN

)
R (t) = Re

(
a0e

j(2πfct−r0)
)
= a0 cos (2πfct− r0) .

(7)

The superimposition of signals from multipath paths is a

cosine signal. a0 is the amplitude and τ0 is the phase of

signal. a0 and τ0 are related to ai, and τi, and independent

with time and carrier frequency. When the device is static,

the received signals travel from static paths, and ai and τi are

fixed for each path, so that a0 stays the same. As a result,

R2
α+R2

β = a20 cos
2 (2πfct− r0)+a20 sin

2 (2πfct− r0) = a20,

the trace has fixed radius a0 for each frequency and is a circle.

Lemma 2. When the device moves, the trace of signal at each
frequency is a circular ring. The width of the ring indicates
the impact of multipath effects.

Proof: The radius of the trace is a function of ai, and

τi. The length of multiple paths would change during the

movement, which leads to the change of ai and τi. As a result,

the radius a0 changes during the movement, and the trace is

a circular ring for each frequency. If the impact of multiple

paths is small in the frame, the width of ring is small, because

the amplitude of signals changes smoothly due to the smooth

propagation loss of the LoS path. Thus, a0 changes slowly

in the frame. When the impact becomes serious, the width of

ring becomes large due to signal’s small scale fading caused by

multiple paths. The small scale fading causes a rapid change

of a0 in the frame. Thus, we can use the inter radius of ring

to estimate the impact of multiple paths.

Due to the path loss and frequency selective fading, the

received signals at different frequencies have different atten-

uation, so we can’t compare the width of ring between them

directly. Then, we define a metric to evaluate the impact of

multiple paths. We design a parameter σj that we refer to

as a Multipath Effect Ratio (MER) for the measured distance

at frequency fj , j ∈ {1,2,...,k}. σj captures the impact of

multipath effects in the frame. We define σj as

D = f (Rα,j , Rβ,j)

γmean = gmean (D)

γinter = ginter (D)

σj =
γinter
γmean

.

(8)

Where Rα,j and Rβ,j are the Rα and Rβ in each frame at

frequency j. D is the signal’s trace diagram deriving from Rα,j

and Rβ,j . gmean and ginter calculate the mean radius γmean

and inter radius γinter of the ring in D. The larger σj means

that the inter radius is close to the outer radius, and indicates

less impact of multipath effects. Finally, the frequency with

the largest MER is selected to estimate the moving distance

in each frame.
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Fig. 3: In order to mitigate multipath effects, we propose a

novel method to determine the impact of multiple paths on

the signal at different frequencies, and select the signal with

the largest MER to estimate the moving distance in each frame.

An example to illustrate MECF is shown in Figure 3. A

speaker continuously transmits acoustic signals at 17.2 KHz

and 18.8 KHz at the same time. Then, we move an Android

smartphone away uniformly from the speaker at the distance

of 1 meter. The smartphone obtains the signals frame by

frame, and each frame has 512 sampling points with 48 KHz

sampling rate. PAMT calculates the MER in each frame, as

shown in Figure 3b. During the movement, we measure the

moving distance using the method in Section III-F at each

frequency, and the moving distance at each frequency should

be the same in each frame if there are no multipath effects.



However, due to multipath effects, the measured distances are

obviously different in Frame A of the signal at 18.8 KHz, and

in Frame B of the signal at 17.2 KHz, as shown in Figure 3a.

In Frame A, the MER of the signals at 17.2 KHz and 18.8

KHz corresponding to {0.9, 0.53}. Thus, we select the signal

at 17.2 KHz to estimate the moving distance due to the larger

MER in the frame. In Frame B, the MER of the signals at

17.2 KHz, 18.8 KHz corresponding to {0.24, 0.78} so that

the signal at 18.8 KHz is chosen to estimate the distance. We

compare our estimation with the ground truth distance, and

the result indicates that MECF could evaluate and mitigate

the impact of multipath effects.

F. Robust Phase Based Ranging

After mitigating the multipath effects, we use the phase

change of the selected signal in each frame to determine the

LoS path length change. Due to the selected signal with largest

MER, the measurement is robust to multipath effects. When

the receiver moves close/away, the phase of acquired signal

would increase/decrease. As the phase of the signal increases

by 2π, the path length would decrease by one wavelength of

the sound wave. We can use phase changes of the signal with

the largest MER to estimate the distance change, and calculate

relative moving distance Δdframe in the frame

Δdframe = −Δθ + 2πk

2π
λ

d =
∑

Δdframe.
(9)

Where λ represents sound length of the selected signal. Δθ
denotes the wrapped phase change relative to initial phase,

and k is an integer which denotes the number of phase wraps

during the movement. When the phase varies from π to −π
/ from −π to π, k increases/decreases by 1. We can use the

distance change to calculate the moving speed and direction.

Multipath effects have the least impact on the selected signal

so that the measurement is robust to multipath fading.

IV. MOTION TRACKING ALGORITHM

In this section, we first use a calibration scheme to obtain

a reference position. Then, we combine the initial position

with the fine-grained distance change to enable 2-D motion

tracking.

A. Estimating Reference Position

The phase based algorithm in Section III-F only measures

the relative distance change, which is not sufficient for motion

tracking. We cannot determine actual position only using the

relative distance change due to the lack of the initial position.

One way is to measure using some additional tools, such as

ruler, hand-hold distance finder. However, those methods are

cumbersome and error-prone. In this subsection, we propose a

calibration method to estimate reference position. We choose

two of the speakers assigned with different frequencies to

estimate the initial position. Without loss of generality, we

assume that two speakers A and B are placed along an x-axis.

The coordinates of A and B are given, as shown in Figure 4.

x
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x

xy

A B

C D

a
c

b

Distance 
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Movement

Fig. 4: Estimating reference position by moving a smartphone

parallel to the x-axis.

We let a user move a smartphone parallel to the x-axis with

unknown distance a. As the mobile is moving close/away

each speaker, the distance between the smartphone and the

speakers reduces/increases. When smartphone moves to the

C/D position, the relative distance between A/B and the

smartphone has minimum value. So we can determine the

position of C and D on the moving path when the distances

become minimum. We could calculate the difference dac of

the relative distance between the smartphone and speaker A

at C and D. Due to the property of a rectangular triangle,

a2+b2 = c2 and c = dac+a, the distance a can be calculated

by

a =
b2 − d2ac
2dac

(10)

Where b denotes the absolute distance between A and B, and

c denotes the absolute distance between A and D. Thus, the

coordinates of C and D can be obtained, and can be used as

the reference position. To improve the accuracy, we can sweep

the smartphone along the moving path multiple times, and use

the mean positions as the estimation for C and D.

B. Tracking Motion by Computing Real-time Position

In order to track the device’s motion, we should obtain the

real-time position of the devices.

The range measurement between the smartphone and the

i-th (i = 1,2,3,...,N ) speaker is denoted as d̂i, where N is the

number of speakers. Let [x, y]
T

be the unknown coordinate

of the smartphone, and let [xi, yi]
T

be the known coordinate

i-th speaker. The known coordinate of the reference position

introduced in the previous subsection is [xR, yR]
T

.

The error-free distance change between the smartphone and

i-th speaker relative to the distance at reference position is

calculated as

di =

√
(x− xi)

2
+ (y − yi)

2 −Ri (11)

where Ri =

√
(xR − xi)

2
+ (yR − yi)

2
. The measurements

of the range differences are modeled by

d̂i = di + εi, i = 1, 2, 3, ..., N (12)

where εi is the measurement error of d̂i.



The LS error function is then defined as the difference

between the measured and true values

e = d̂− d (13)

where d̂ =
[
d̂1, d̂2, ..., d̂N

]T
and d = [d1, d2, ..., dN ]

T
.

We define vector Λ �
[
x y x2 + y2

]T
. Then, we can

rewrite Equation 13 in matrix form as

e = AΛ− b (14)

where

A = [v1, v2, ..., vi, ..., vN ]
T
, vi =

[−2xi −2yi 1
]
,

b = [b1, b2, ..., bi, ..., bN ]
T
, bi =

(
d̂i +Ri

)2
− x2

i − y2i ,

i = 1,2,...,N.

According to LS algorithm, the solution of minimizing e is

given by

Λ =
(
ATA

)−1
ATb. (15)

The unknown coordinate of the smartphone can be expressed

as

[x, y]
T
= [Λ (1) ,Λ (2)]

T
. (16)

Note that the smartphone’s coordinate is updated in each

sampling time, and we can track the smartphone’s motion

using the real-time coordinate.

V. IMPLEMENTATION

We implement PAMT on a standard Android platform. We

conduct experiments on a GIGABYTE Z77X-UD3H desktop

with Intel I7 CPU and 8 GB RAM. The desktop has a

VIA sound card which could support at most 8 speakers.

Some PHILIPS SPA311/93 speakers ($8 each) connect to the

desktop and transmit audio signals at different frequencies.

PHILIPS SPA311/93 can transmit acoustic signals up to 23

KHz in practical usage. We develop PAMT on a ZTE B2015

mobile phone with Andriod 5.1 Operating System, and a

speaker connected with the desktop, none of them are installed

additional hardware. We use the speakers to transmit inaudible

acoustic signals, each at certain frequency. Then, we use the

bottom microphone of the smartphone to record the sound

wave with the sampling rate of 48 KHz, which is supported

by most smartphones. Inspired by the task scheduling in fog

networks [28] [29], we offload the computation of ranging and

tracking to the desktop in order to extend batter lifetime.

VI. EVALUATION

For 1-D ranging, we first evaluate the average movement

distance error, the impact of multipath effects reduced by

MECF. Then, we compare the performance of different mul-

tipath mitigation methods, and the performance of MECF

using different number of carriers. A speaker connected with

the desktop is implemented as an audio source. The Android

smartphone is used as a mobile receiver. We move the smart-

phone close/away the audio source, and record the distance

(a) Testbed setup for 1-D ranging (b) Testbed setup for the per-
formance evaluation of motion
tracking.

Fig. 5: Experimental Setup

change during the movement. Since the distance between them

changes over time, we use a rule along the moving path that

collects the ground truth data, as shown in Figure 5a.

For 2-D tracking, we use a three-speaker system as shown

in Figure 5b. The separation between adjacent speakers is

70 centimeters. Each speaker is allocated 0.8 KHz bandwidth

with 200 Hz interval. The three-speaker system occupies 17.2-

19.4 KHz, which are virtually inaudible to most people. The

remaining band-width (from 19.4 KHz to 23 KHz) retains

for future works, such as assigning to extra speakers to

improve tracking performance. We evaluate the performance

of motion tracking by evaluating the median error between

the trajectories tracked by PAMT versus the ground truth

trajectories recorded by a camera. The ranging, tracking, and

visualization, are both done on-line in real-time.

A. Experimental Results

a) The accuracy of 1-D ranging: PAMT achieves an av-

erage movement distance error of 2 mm when the smartphone

moves for 40 cm at a distance of 1 m. In our experiments,

we use PAMT to measure the distance changes between a

smartphone and a speaker, and use a rule to collect ground

truth data. The smartphone’s initial position is 1 m away from

the speaker, and moves away from the speaker for a distance

of 40 cm. Figure 6a plots the Cumulative distribution function

(CDF) of the 1-D relative distance measurement error for 100

measurements. The median error is 2 mm, and 90-th percentile

error is 6 mm. We also compare our approach with CAT, a

moving distance measurement approach based on FMCW [7].

Results show that our approach outperforms CAT in terms of

distance measurement accuracy by 50% on average.

b) Impact of multipath effects: In this experiment, we

examine the impact of multipath effects to our measurement.

Particularly, we conduct following experiments: we use the

speaker to play the sinusoidal audio signals at four frequencies.

We first estimate the moving distance using the signal at one

of the frequencies without using MECF, and using MECF with

four carriers, respectively. Then, we calculate the measurement

error at different distances. The comparisons of the results

(95% confidence interval) from the estimation without/with

MECF are shown in Figure 6b. The median error increases

as the distance increases because the multipath effects are

strengthened as the transmission distance increases. Never-

theless, we observer that MECF reduces median error from
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Fig. 6: The accuracy of 1-D ranging, and the performance of

MECF

9.5 mm to 5.5 mm at the distance of 180 cm, and is very

effective for variance reduction. Overall, MECF can improve

the ranging accuracy and the robustness against effects of

multipath. We also evaluate the influence of the number of

carriers at a distance of 1 meter, as shown in Figure 6c.

The carriers are transmitted by the same speaker with the

same amplitude. We can see that error reduces as the number

increases. When four carriers are used, the error reduces to 2

mm. The results show the robustness and feasibility of MECF

under multipath effects.

c) The performance of MECF: We compare the per-

formance of MECF with the linear regression based method

proposed in [17]. A speaker transmits four carriers, and we

calculate the median error of ranging at different distances,

as shown in Figure 6d. MECF and linear regression method

have similar performance at 60 cm because multipath effects

have limited impact at the distance. As the distance increases,

the performance of linear regression reduces significantly

because it requires wider bandwidth to ensure good regression

results, while MECF has more stable and robust performance.

We observe that when the distance is 2.4 meters, the linear

regression based method has a median error of 15 mm,

and cannot mitigate multipath effects effectively. The results

indicate PAMT can achieve good ranging performance with a

limited bandwidth of acoustic signals (e.g., 0.8 KHz), which

ensures great robustness for practical usage on mobile devices.

d) The accuracy of motion tracking: We use a PAMT-

enabled smartphone to draw a triangle, and a loop back in 2-D

space. We use a camera to collect the ground-truth trajectories
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Fig. 7: Tracking performance.

of the smartphone. We compare the measured trajectories

versus the original trajectories to quantify the accuracy. Figure

7a and 7b show the sample results of the estimated trajectories

and ground truth trajectories. We compare the median error of

tracking with CAT and a Doppler effect based method [15]

(denoted by AAMouse), as shown in Figure 7c. The median

error of PAMT is 3.7 mm, while that of CAT and AAmouse

are 6 mm and 7 cm respectably. The results show that the

tracking accuracy of PAMT out-performs CAT and AAMouse

significantly.

e) The impact of moving speed: We move a smartphone

along straight line for 20 cm at different speed, and track

the motion of the smartphone using the three-speaker system.

The median errors of the trajectories are shown in Figure

7d. We observe that the median errors are in the range

of 3-5 mm at different speed. As the speed increases, the

median error increases slightly, because the fast changing

phase caused by high speed movement leads to frequency shift.

The frequency shift may be seen as an interference from near

frequencies, and restrained by band-pass filter, which would

reduce tracking accuracy. Nevertheless, the results indicate

PAMT could accurately track the motion at different speeds,

which are not easily detected by Doppler effect based methods

on mobile devices.

VII. LIMITATIONS

In this section, we discuss some limitations of our current

system and potential directions for future work. First, some

limitations of hardware and system bring extra latency to track

the real time position. The minimum of buffer size in Android

platform is 512 samples which would introduce at least 10



milliseconds delay. Further, in order to extend battery life, the

smartphone offloads its computation to a desktop using Wi-

Fi network with UDP protocol, which also brings in a few

milliseconds delay. In future work, we plan to balance the

computation and energy consumption, and make an optimal

solution for the trade-off between latency and battery lifetime.
Second, the total bandwidth of sound is limited on smart-

phone. In PAMT, each speaker is allocated 0.8 KHz bandwidth

separated by 200 Hz guard band to avoid carrier interference.

The guard band and the band-pass filter used in our system

limit the maximum movement speed (about 30-40 cm/s) of

devices that could be accuracy tracked. In future work, we

plan to reduce the limitation of speed by improving bandwidth.

For example, we plan to use some commercial microphones

to replace the speakers as receiver, and a smartphone as

source, so that different degrees of freedom can share the total

bandwidth.

VIII. CONCLUSIONS

This paper presents the system design of PAMT, which

provides a fine-grained mobile interaction solution for com-

mercial mobile devices. We propose a phase based scheme

to measure the distance change between the source and

receiver using multiple signals at single frequency. And we

also propose a novel method to select the signal suffering

from the least multipath fading and calculate moving distance,

then improve the performance of our approach in multipath

fading environments. In this way, we implement a prototype

of PAMT using a commercial smartphone and some speakers.

The prototype could position and track a smartphone with mm-

level accuracy. We conduct systematic evaluation based on the

prototype. Experiment results validated our idea as well as the

system design.
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